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Abstract

We use simultaneous data from equity, index and option markets in order to estimate
a single factor market model in which idiosyncratic volatility is allowed to be priced.
We model the index dynamics’ P-distribution as a mean-reverting stochastic volatil-
ity model as in Heston (1993), and the equity returns as single factor models with
stochastic idiosyncratic volatility terms. We derive theoretically the underlying assets’
Q-distributions and estimate the parameters of both P- and Q-distributions using a
joint likelihood function. We document the existence of a common factor structure in
option implied idiosyncratic variances. We show that the average idiosyncratic vari-
ance, which proxies for the common factor, is priced in the cross section of equity
returns, and that it reduces the pricing error when added to the Fama-French model.
We find that the idiosyncratic volatilities differ under P- and Q-measures, and we
estimate the price of this idiosyncratic volatility risk, which turns out to be always
significantly different from zero for all the stocks in our sample. Further, we show
that the idiosyncratic volatility risk premiums are not explained by the usually equity
risk factors. Finally, we explore the implications of our results for the estimates of the
conditional equity betas.

Keywords: Idiosyncratic volatility risk premium; joint estimation; option return; factor
models.

JEL Classification: G10; G12; G13.



1 Introduction

The most important result of the capital asset pricing model (CAPM) states that only the
systematic risk is priced in equilibrium and idiosyncratic risk is not. Some earlier studies
such as Levy (1978), Merton (1987), and Xu and Malkiel (2003) challenged this finding, by
suggesting that investors may not be able to diversify properly. In such a case idiosyncratic
risk should be positively related to the expected stock returns to compensate for this im-
perfect diversification. Although the definition of idiosyncratic risk has changed over time
because of various redefinitions of the CAPM1, the very definition of idiosyncratic risk implies
that it should be uncorrelated or, if the non-diversification argument is accepted, positively
correlated to expected stock returns.

In the light of this theory, the results of the influential study of Ang et al. (2006), consti-
tute a puzzle, since they document the underperformance of the stocks with high idiosyn-
cratic return volatilities. Several subsequent studies have tried to explain this puzzle. Chen
and Petkova (2012) propose that idiosyncratic volatility is priced because it correlates with
changes in the average equity return variance, which is part of the aggregate variance. Duarte
et al. (2012) introduce the predictive idiosyncratic variance component that correlates with
macro economic factors, and argue that the puzzling findings of Ang et al. (2006) do not
hold when portfolios are sorted based on the unpredicted idiosyncratic volatilities. Other
papers suggested that the puzzling findings are due to the choice of frequency, weighting,
illiquidity, or the specific measurement of volatility.2

Another set of relevant CAPM studies examined the issues of beta estimation and systematic
risk through the option market. Buss and Vilkov (2012, BV) and Chang et al. (2011, CCJV)
pointed out that information extracted from that market is forward-looking, while the usual
CAPM estimations rely on historical data. Hence, CAPM results extracted from the option
market may be better proxies for future estimates of systematic risk than those stemming
from the conventional approach. Christoffersen et al. (2013, CFJ) adopt a similar reasoning
and estimate betas from a cross section of index and equity options, assuming that the
idiosyncratic volatility is not priced.

A key issue in using the option market for the CAPM estimations is the change in probability
measure between underlying and option markets. Once the complete markets assumption is
abandoned, the underlying asset return distribution extracted from the option market, the
risk neutral or Q-distribution, differs from the one observed in the underlying asset market,
the physical or P-distribution. In particular, the P-distribution market volatility differs from
the risk neutral volatility by the price of volatility risk. The CAPM studies relying on option
market data have addressed the issue by correcting the volatility through an ad hoc modeling
of the correlation matrix of the returns as in BV or by adopting several assumptions about
the structure of idiosyncratic risk as in CCJV. All these studies rely only on option market
data for their empirical work and assume explicitly that idiosyncratic risk is not priced, or
that idiosyncratic volatility is the same under both P- and Q-distributions.

1In particular, the conditional CAPM and the Fama-French (1993) model.
2See Huang et al. (2010), Bali and Cakici (2008), Han and Lesmond (2011), and Fu (2009).
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In this paper we combine the two strands of literature, by investigating the pricing of id-
iosyncratic risk using option-implied volatilities. We estimate the parameters of the P- and
Q-distributions from both underlying and option market data, and we assume in our un-
derlying market model that idiosyncratic volatility is priced. Our empirical results reject
decisively the hypothesis that idiosyncratic risk is not priced.3 To the best of our knowledge
this is the first study that links the physical and risk neutral distributions of idiosyncratic
volatilities.

Our estimation methodology has also implications for equity betas, which are very important
in portfolio selection and corporate finance. A popular estimation method is to use a rolling
window of historical returns. Several studies have proposed using option prices to obtain
forward looking estimates of stock betas. In our modeling framework beta enters the equity
price dynamics and is estimated directly as part of the structural parameters. Moreover, we
estimate the stock beta using the information in both returns and options prices, taking into
account the market variance and idiosyncratic variance risk premiums. Further, we develop a
new procedure to estimate conditional equity betas, which we estimate out-of-sample, using
only the option prices observed on a given day.

We use a continuous-time modeling framework that allows for a factor structure in equity
returns, where the factor is the market return. The idiosyncratic return volatility of the
stock (IV ol) follows a square-root stochastic process and is allowed to be priced.4 We
estimate the model parameters and idiosyncratic volatility state variables, conditional on
market parameters and state variables, using the joint information from the equity option
prices and equity returns. Our data set contains historical returns and option prices for
the market index and 27 blue chip stocks over the period 1996 to 2011, and contains more
than 3.4 million option quotes. Our estimation is based on a likelihood function that has a
return component and an option component, while the structural parameters are internally
consistent between the P and Q measures. The simultaneous estimation of the P- and
Q-distribution parameters allows us to filter the spot idiosyncratic volatilities under both
distributions, using an internally consistent set of parameters.

Previous studies document a strong factor structure in implied volatility levels, moneyness
slopes and term structure slopes, with the factor being the market implied volatility. In our
results we find that even after removing the market return factor from the equity returns
there is still a strong factor structure left in the implied idiosyncratic volatility (IIV ol) levels,
slopes and term structure slopes, very similar to that observed in total implied volatilities.
The first two principal components of the IIV ol levels explain 58% and 23% of the cross-
sectional variations, respectively. The first common component has a 99% correlation with
the average implied idiosyncratic volatility levels of all firms. Further, the first and the second
common components have a correlation of 65% and 55% with the index implied volatility
levels, respectively. The first two principal components of IIV ol moneyness slopes explain

3Note that our idiosyncratic volatility is not the same as in the study of Ang et al. (2006), since it
is extracted from a single factor model and not from the Fama-French (1993) factors. The latter cannot
generate an option pricing model.

4This modeling framework was also used by CFJ, except that these authors assumed that IV ol is the
same under the P- and Q-distributions.
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48% and 6% of the cross-sectional variations, respectively. The first common component has
a 99% correlation with the average implied idiosyncratic volatility slopes of all firms. The first
and the second common components have a correlation of 42% and 8% with the index implied
volatility slope, respectively. Finally, the first two principal components of the term structure
slopes explain 61% and 7% of the variations, respectively. The first principal component has
a 99% correlation with the average implied idiosyncratic volatility term structure slopes of
all firms. The first and the second common components have a correlation of 78% and -13%
with the index implied volatility term structure slope, respectively.

These findings are consistent with those of Herskovic et al. (2013), who show that there
is a strong factor structure in idiosyncratic volatilities, similar to that in total volatilities,
by looking at firms fundamentals. Our findings complement the empirical literature that
shows there are common factors in the idiosyncratic volatilities of stock returns under the
P distribution, by documenting the existence of the same factor structure in distributions
extracted from equity options prices.

We use the average idiosyncratic variance, AIV, as the potentially priced risk factor, and we
test whether this factor can help explain the cross section of equity returns. We show that
the AIV factor can reduce the pricing error of the Fama-French 25 size and value portfolios.
Moreover, AIV has a positive risk premium, and its cross sectional explanatory power, in
our sample period, is more than that of the HML and SMB factors.

Further, we derive the expected option return, and we form portfolios that contain the equity
option, the stock, the index option, and the market index. These portfolios are formed and
rebalanced in such a way that they are only exposed to the idiosyncratic variance of the
equity. The return on these portfolios can be considered as the risk premium for the equity
idiosyncratic variance. Using calls and puts with different moneyness ratios, we present
evidence of the existence of the idiosyncratic variance risk premium.

Our estimation results show that the idiosyncratic volatility is priced and it can bear a
negative or positive sign. Moreover, we define a measure of the idiosyncratic variance risk
premium, defined over a 30-day period as the difference between the expected integrated
idiosyncratic variance under the P and Q measures that is only partially driven by the market
volatility risk premium. Further, the idiosyncratic volatility risk premium is significantly
different from zero for all of the stocks in our sample, and has different signs for different
stocks.

We show that the market return and the Fama-French factors, as well as the momentum
factor cannot explain the time-series variations in the idiosyncratic volatility risk premiums.
These time series variations can, however, be partly explained by the market variance risk
premium. Further, we show that the average variance risk premium of all firms, AIV RP ,
together with the component of market variance risk premium orthogonal to AIV RP , have
a strong explanatory power in the time-series variations of the idiosyncratic variance risk
premiums.

The rest of the paper is organized as follows. In section 2 we present the model. Section 3
contains the description of the data and the estimation methodology, as well as the results
regarding the common structure in idiosyncratic volatilities. In section 4 we discuss the
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ability of our proposed factor in explaining the cross section of equity returns. Section 5
presents the measure and the properties of the idiosyncratic volatility risk premiums. In
section 6 we discuss the estimation of conditional betas. Section 7 cocludes.

2 The Model

Here we present an equity option valuation model using a single-factor structure that links
the equity return dynamics to the market return dynamics. We model an equity market
consisting of N stocks and a market index. The individual stock prices are denoted by Si,t
for i = 1, 2, . . . , N , and the market index price is denoted by St. We assume that investors
have access to a risk free bond whose return is r.

We assume the following stochastic volatility dynamics for the market index under the phys-
ical distributions (hereafter P ):

dSt/St = (µ)dt+
√
vtdzt,

dvt = κ(θ − vt)dt+ σ
√
vtdwt

(2.1)

As in Heston (1993), θ is the unconditional average variance, κ captures the speed of mean
reversion of vt to its long-run average, and σ measures the volatility of variance. The market
equity risk premium is represented by µ. The correlation between the shocks to market
return and its variance is represented by ρ, and it captures the market leverage effect.

Further, we assume that the stock return follows a one-factor model, where the factor is the
excess return on the market. The volatility of the idiosyncratic part of the stock return,
referred to as idiosyncratic volatility (IV ol), is assumed to be stochastic, and to follow a
square-root type process. The following describes the stock price dynamics for firm i:

dSi,t/Si,t = (µi)dt+ βi(dSt/St − rdt) +
√
ξi,tdzi,t,

dξi,t = κi(θi − ξi,t)dt+ σi
√
ξi,tdwi,t

(2.2)

where, dS/S−rdt is the instantaneous excess return on the market, βi is the market beta, µi
is the idiosyncratic return, ξi is the variance of the idiosyncratic return5 , σi is the volatility
of the idiosyncratic variance, κi is the speed of mean reversion for idiosyncratic volatility, θi
is the long-run average of the idiosyncratic volatility, and ρi is the correlation between the
shocks to idiosyncratic return and its variance.

Proposition 1. The market index has the following dynamics under the risk-neutral measure
(hereafter Q):

dSt/St = rdt+
√
vtdz̃t,

dvt = κ̃(θ̃ − vt)dt+ σ
√
vtdw̃t

(2.3)

5Here the idiosyncratic return is defined as the excess stock return in a one-factor model framework.
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where, κ̃ = κ + λ, and θ̃ = κθ
κ+λ

, and where λ is the price of market volatility risk as in
Heston (1993). Moreover, the equity dynamics under Q is as follows

dSi,t/Si,t = rdt+ βi(dSt/St − rdt) +
√
ξi,tdz̃i,t,

dξi,t = κ̃i(θ̃i − ξi,t)dt+ σi
√
ξi,tdw̃i,t

(2.4)

where, κ̃i = κi + λi, and θ̃i = κiθi
κi+λi

, and where λi is the price of idiosyncratic volatility risk.

Proof. See Appendix A.

The above model has been used by Christoffersen et al. (2013) who, however, assume that
the idiosyncratic volatility is not priced and that the idiosyncratic variance follows the same
dynamics under the P and Q distributions. They discuss the consistency of their model with
some of the empirical evidence in the equity option literature such as Duan and Wei (2009)
and Dennis and Mayhew (2002). Moreover, they derive a close form solution for the equity
option price, and present estimation results based on equity options.

The assumption that the idiosyncratic volatility is not priced, is equivalent to implying that
the market excess return is the only priced factor. There is, however, significant evidence
that there are other priced factors in the economy. If the CAPM is miss-specified and
there are other priced factors, then the idiosyncratic variance would consist of exposure
to those missing factors, and the price of the idiosyncratic variance would reflect the linear
combination of the prices of the variance of the missing factors. This is a testable hypothesis,
which we test by relaxing the assumption of non-priced IV ol, and letting the idiosyncratic
volatility dynamics be different under the P and Q distributions.

Following Heston (1993), we assume that the price of the IV ol risk is proportional to the level
of the idiosyncratic variance. Based on this assumption, the same closed form solution for
the European equity options that Christoffersen et al. (2013) derive holds in our framework.6

In our empirical work we test the hypothesis of priced idiosyncratic volatility by using infor-
mation from both equity returns and equity options and verifying whether the idiosyncratic
volatility dynamics are different under the physical and risk-neutral distributions.

3 Estimation and Results

There are several approaches to estimating stochastic volatility models. The main challenge
in estimating stochastic volatility models is the filtering of the unobserved volatility. One
approach is to treat the unobserved volatility as a parameter, and estimate all parameters
using a single cross section of option prices. This is done by Bakshi et al. (1997). Another
approach is to use multiple cross sections of option prices. However, for every cross section,
a different initial volatility estimate is required. Bates (2000) and Huang and Wu (2004) use
this approach. A third approach provides a likelihood-based estimation that can combine

6For the derivation of the option price formula please refer to Christoffersen et al. (2013).
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the information form the option data and the underlying returns, and imposes consistency
between the P and Q distributions. Ait-Sahalia and Kimmel (2007), Eraker (2004), Jones
(2003), and Bates (2006) provide an MCMC analysis within this framework. A last group
of papers takes a frequentist approach that can also combine the information from the
option prices and the underlying returns. Chernov and Ghysels (2000) use the efficient
method of moments, while Pan (2002) uses a method of moments technique. Santa-Clara
and Yan (2010) and Christoffersen et al. (2013) use likelihood functions that contain a return
component and an option component. Our empirical setup is most closely related to this
last group of papers.

3.1 Data

We collect option data for the S&P 500 and for 27 equities, all components of the Dow
Jones index. We did not include in our sample Bank of America, Kraft Food, and Travellers
because of data unavailability. The option data that we use comes from the OptionMetrics
volatility surface, which is based on the bid-ask midpoint. Our data spans the period from
January 4, 1996, to December 29, 2011. We focus on options with maturity of up to six
months. Since our estimation is computationally very demanding, we excluded options with
longer maturities to keep the estimation manageable. Moreover, our data contains out-of-
the-money options with moneyness7 less than 1.1 for calls and greater than 0.9 for puts. We
filter out options with implied volatility less than 5% and greater than 150%, and options
that violate the apparent arbitrage conditions as described in Bakshi et al. (2003).

We also collect data for the index levels, daily returns, and dividend yield, as well as stock
prices, returns, and cash dividends from CRSP. The implied volatility surface data is calcu-
lated using binomial trees. When evaluating the options model price, we subtract for every
option on every stock on every day the present value of dividends, assumed to be known
during the life of the option, from the stock price on that day, and we treat the option as
European. The discounting is done using the appropriate interest rate estimated by linear
interpolation of the Zero Coupon Yield Curve available from OptionMetrics. We do the
same discounting for the index using the index dividend yield.

Table 1 presents the names of the companies in our sample as well as the number of calls,
puts, and total options for each firm, and for the market index. The number of option
contracts is highest for the S&P500 index. On average there are 120, 811 options available
for each firm, with Cisco and Johnson & Johnson having the lowest and highest number
of contracts among all firms, respectively. Our estimation is based on a total of 3, 430, 176
option quotes for the market and all equities.

In Tables 2 and 3 we report the sample average implied volatility, minimum and maximum
implied volatilities, along with average option delta, option vega8, and average days-to-
maturity of all calls and puts, separately. The average implied volatility of the market in our
sample is 19.2%. Cisco and Johnson & Johnson have the maximum and minimum average

7Moneyness is defined as the strike price divided by the underlying asset’s price.
8These are Black-Scholes vegas evaluated at the implied volatilities.
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implied volatility in our sample. Moreover, the average days-to-maturity is close to 80 days
for all firms and the market index.

3.2 Joint Estimation

In order to capture the difference between the physical and risk neutral distributions of
the equity idiosyncratic volatilities, it is required to fit both distributions using the same
internally consistent set of structural parameters. We do so by using a joint likelihood
function that has two components, one based on returns and one based on options. Since
the market variance and equity idiosyncratic variance are unobserved, we filter these sate
variables by using the Particle Filter (PF) method. The PF methodology offers a convenient
filter for nonlinear models such as the stochastic volatility models and is used extensively in
engineering, with some applications in finance.9

Our estimation consists of two steps. First, we estimate the market’s parameters and the
filtered spot market variances. Then conditional on the market model’s parameters and
the spot market variances, we estimate each equity’s parameters and the spot idiosyncratic
variances. In what follows we describe the detailed estimation procedure.

3.2.1 Market Model

Here we describe the estimation of the market model, presented in (2.1) and (2.3). We
describe how the return-based and the option-based likelihood functions are calculated, and
finally how the parameters and the spot variances are estimated. Applying Ito’s lemma to
(2.1) we get:

dln(St) = (µ− 1

2
vt)dt+

√
vtdzt,

dvt = κ(θ − vt)dt+ σ
√
vtdwt

(3.1)

The above equation shows how the unobserved volatility states are related to the observed
index prices. This relationship allows the filtering of the market spot volatilities form the
returns. First we discretize the model in (3.1). We use Euler scheme to get:

ln(St+∆t)− ln(St) = (µ− 1

2
vt)∆t+

√
vtzt+∆t,

vt+∆t = vt + κ(θ − vt)∆t+ σ
√
vtwt+∆t

(3.2)

where, zt+∆t and wt+∆t are normal random variables with mean zero and variance ∆t. We
implement the discretized model in (3.2) using daily index log-returns, but all the results
are expressed in annual terms.

9For other studies that use the PF method see Christoffersen et al. (2010), Johannes et al. (2009) and
Gordon et al. (1993).
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The PF method approximates the true density of the variance state vt+∆t by a set of “par-
ticles” that are updated through the equations in (3.2). At any time t + ∆t we generate
N particles {vjt+∆t}Nj=1 from the empirical distribution of vt+∆t, conditional on N particles

{vjt}Nj=1 from the empirical distributions of vt. This particular implementation of the PF is
referred to as the sampling-importance-resampling (SIR) PF and follows Pitt (2002).10

Starting from a vector of particles vj1 = θ ∀j, on every day t we simulate a new set of
parcels,{ṽjt+∆t} from the set of smoothly resampled particles {vjt}, according to (3.2), as
follows:

zjt+∆t = (ln(St+∆t/St)− (µ− 1

2
vjt ))/

√
vjt

wjt+∆t = ρzjt+∆t +
√

1− ρ2εjt+∆t

(3.3)

where εjt+∆t are independent normal random variables with mean zero and variance ∆t.
Replacing (3.3) into the variance dynamics in (3.2), we get a simulated set of particles.

ṽjt+∆t = vjt + κ(θ − vjt )∆t+ σ

√
vjtw

j
t+∆t

(3.4)

So far we have N possible values for vt+∆t. Now we want to give weights to the simulated
particles. The weight for every particle, W̃ j

t+∆t, is the likelihood that the next day return at
t+ 2∆t is generated by this particle.

W̃ j
t+∆t =

1√
2πṽjt+∆t∆t

· exp

(
− 1

2

(
ln(St+2∆t

St+∆t
)− (µ− 1

2
ṽjt+∆t)∆t

)2

ṽjt+∆t∆t

)
(3.5)

We can then get the probability of each particle by normalizing the weights:

W̆ j
t+∆t =

W̃ j
t+∆t∑N

j=1 W̃
j
t+∆t

(3.6)

At this point we have the set of the raw particles and the associated probabilities, from which
we can apply Pitt (2002) algorithm to get the empirical distribution of smoothly resampled
particles. These particles can be used to simulate the next period particles until we have the
empirical distributions of variances for each day in the sample.

The return-based likelihood function, which is a function of the P-distribution parameters
Θ ≡ {µ, κ, θ, σ, ρ}, can be defined as follows:

10We refer to Christoffersen et al. (2010) and Pitt (2002) for a more detailed description of the PF
algorithm.
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lnLR ∝
T∑
t=1

ln
( 1

N

N∑
j=1

W̃ j
t (Θ)

)
(3.7)

The P-measure filtered spot variance vPt would be the average of the smoothly resampled
particles.

v̂Pt =
1

N

N∑
j

vjt (3.8)

Moreover, the filtered shocks to the index return, conditional on the filtered spot variance
would be:

ẑPt+∆t = (ln(St+∆t/St)− (µ− 1

2
v̂Pt ))/

√
v̂Pt (3.9)

For the marker model under the Q-distribution we need to estimate the vector of spot
variances {vt}, and a set of structural parameters Θ̃ ≡ {κ, θ, λ, σ, ρ}. These parameters
completely identify the data generating process under the risk-neutral measure. The unob-
served spot variance under the Q-measure is filtered from the returns using the PF method
as described before, but this time based on the mapped structural parameters {κ̃, θ̃, σ, ρ},
where κ̃ = κ + λ, and θ̃ = κθ

κ+λ
. After repeating the same procedure as described before,

the Q-measure spot variance on every day can be estimated as the average of the smoothly
resampled particles.

v̂Qt =
1

N

N∑
j

vjt (3.10)

Similarly, the Q-measure filtered shocks to the index return, conditional on the filtered spot
variance would be:

ẑQt+∆t = (ln(St+∆t/St)− (µ− 1

2
v̂Qt ))/

√
v̂Qt (3.11)

Now define the vega weighted option pricing error of an option n as:

ηn = (CO
n − CM

n (Θ̃, v̂Q))/V egan, n = 1, . . . ,M (3.12)

where, CO
n is the observed price of index option n, CM

n (Θ̃, v̂Q)) is the model price for the
same option,11 M is the total number of index options, and V egan is the Black-Scholes op-
tion vega evaluated at the implied volatility. These vega weighted option pricing errors serve

11The time subscript is dropped for compactness.

9



as an approximation to the implied volatility errors, and since they do not require a numer-
ical inversion of the Black-Scholes model, they are very helpful in large scale optimization
problems such as ours. Assuming that these disturbances are i.i.d. normal, the option-based
likelihood can be obtained as follows:

lnLO ∝ −1

2

(
M ln(2π) +

M∑
n=1

(
ln(s2) + η2

n/s
2
))

(3.13)

where we can replace s2 by its sample analog ŝ2 = 1
M

∑N
n=1 η

2
n. The set of structural param-

eters Θ̂ and ˆ̃Θ can be found as the solution to the following optimization problem:

max
Θ,Θ̃

lnLR + lnLO (3.14)

3.2.2 Equity Model

We estimate the equity model parameters and the spot idiosyncratic variances for every
stock, conditional on the filtered market spot variances and the filtered shocks to the index
returns. We want to estimate the set of structural parameters Θi ≡ {µi, κi, θi, σi, ρi, βi} of
the model in (2.2), as well as the vector of spot idiosyncratic variances {ξi,t}. The Euler
discretization of (2.2) yields:

(Sit+∆t − Sit)
Sit

= (µi)∆t+ βi

(
(µ− r)∆t+

√
vtzt+∆t

)
+
√
ξi,tzi,t+∆t

ξi,t+∆t = ξi,t + κi(θi − ξi,t)∆t+ σi
√
ξi,twi,t+∆t

(3.15)

As in the case of the market model, for a set of smoothly resampled particles {ξji,t} at time t,

the P-measure shocks to stock returns {zji,t+∆t} can be obtained conditional on the filtered

shocks to market return, {ẑPt+∆t}.

We then generate correlated shocks to idiosyncratic variance dynamics:

wji,t+∆t = ρiz
j
i,t+∆t +

√
1− ρ2

i ε
j
i,t+∆t

(3.16)

where, εji,t+∆t are independent random variables with mean zero and variance ∆t. We can

now simulate a raw set of particles, {ξ̃ji,t+∆t} according to equations (3.10), given the set of

smoothly resampled particles {ξji,t}.

ξ̃ji,t+∆t = ξji,t + κi(θi − ξji,t)∆t+ σi

√
ξji,tw

j
i,t+∆t

(3.17)
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We then have a set of N possible values for ξi,t+∆t to which we want to assign weights. The
weight for every particle would be the likelihood that the next day stock return is generated
by this particle, given that the next day’s index return shock is revealed first.

W̃ j
i,t+∆t =

1√
2πM j

1

· exp

(
− 1

2

(
(
Si,t+2∆t − Si,t+∆t

Si,t+∆t

)−M j
2

)2

M j
2

)
(3.18)

where M i
1 and M j

2 are the conditional mean and variance of the stock return at t+ 2∆t.

M j
1,t+∆t = E

[(Si,t+2∆t − Si,t+∆t

Si,t+∆t

)∣∣∣Si,t+∆t, ξ
j
i,t+∆t, v̂t+∆t; ẑt+2∆t

]
= µi∆t+ βi(µ− r)∆t

M j
2,t+∆t = var

[(Si,t+2∆t − Si,t+∆t

Si,t+∆t

)∣∣∣Si,t+∆t, ξ
j
i,t+∆t, v̂t+∆t; ẑt+2∆t

]
= (β2

i v̂t+∆t + ξji,t+∆t)∆t

(3.19)

After normalizing the weights W̃ j
i,t+∆t we would have the empirical distribution of the ξi,t+∆t,

from which we can smoothly resample the next period’s particles. We start from ξji,1 = θi ∀j,
and repeat this procedure for every day in the sample.

The return-based likelihood functions, which is a function of the P-distribution parameters
Θi ≡ {µi, κi, θi, σi, ρi, βi}, can be defined as follows:

lnLRi ∝
T∑
t=1

ln
( 1

N

N∑
j=1

W̃ j
i,t(Θi)

)
(3.20)

Moreover, the vector of P-measure filtered spot idiosyncratic variances can be obtained as
follows:

ξ̂Pi,t =
1

N

N∑
j

ξji,t (3.21)

For the equity model under the Q-distribution (2.4) we need to estimate the vector of spot
variances {ξi,t}, and a set of structural parameters Θ̃i ≡ {κi, θi, λi, σi, ρi, βi}. The unobserved
spot idiosyncratic variance under the Q-measure is filtered from the returns using the PF
method as described before, based on the mapped structural parameters {κ̃i, θ̃i, σi, ρi, βi},
where κ̃i = κi + λi, and θ̃i = κiθi

κi+λi
. After repeating the same procedure as described before,

the Q-measure spot idiosyncratic variance on every day can be estimated as the average of
the smoothly resampled particles.
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ξ̂Qi,t =
1

N

N∑
j

ξji,t (3.22)

Given now the market structural parameters ˆ̃Θ, estimated market spot variances {v̂t}, filtered
shocks to the market returns {ẑQt }, and the estimated Q-measure spot idiosyncratic variances
ξ̂Qi,t, we can find the option pricing error for every option as a function of the Q-measure equity

structural parameters Θ̃i. As with the market model, for an option n written on stock i, we
define the vega weighted option pricing error as:

ηi,n = (CO
i,n − CM

i,n(Θ̃i,
ˆ̃Θ, v̂Q, ξ̂Qi ))/V egai,n, n = 1, . . . ,Mi (3.23)

where, CO
i,n is the observed price of equity option n for stock i, CM

i,n is the model price for the
same option, Mi is the total number of options available for stock i, and V egai,n is the Black-
Scholes option vega evaluated at the implied volatility. Assuming that these disturbances
are i.i.d. normal, the option-based likelihood can be obtained as follows:

lnLOi ∝ −
1

2

(
Mi ln(2π) +

Mi∑
n=1

(
ln(s2

i ) + η2
i,n/s

2
i

))
(3.24)

where we can replace the s2
i by its sample analog ŝ2

i = 1
Mi

∑Mi

n=1 η
2
i,n. The set of equity

structural parameters Θ̂i and ˆ̃Θi can be found as the solution to the following optimization
problem:

max
Θi,Θ̃i

lnLRi + lnLOi (3.25)

3.3 Estimation Results

In this section we report the parameters estimates for the S&P 500 index and the 27 equities
in our sample for the period 1996 − 2011. As explained before, in our estimation we use
information from the returns as well as the option prices. For both the index and the equities
we use option contracts on each trading day. The index options are European, but the equity
options are American. Since the closed form equity option pricing formula in our framework
is only available for European options, we eliminate in-the-money options from the sample
to avoid biases due to the early premium exercise of American options.12

12Bakshi et al. (2003) show that the difference between Black-Scholes implied volatilities and American
option implied volatilities are negligible for out-of-the-money calls and puts.

12



3.3.1 Parameter Estimates

Table 4 presents the estimated structural parameters for the market and the equity models.
In our joint estimation we restrict the P- and Q-measure parameters to be consistent. So,
only the unconditional mean and the speed of mean reversion of the volatility dynamics would
be different between the two measures due to the prices of the market and the idiosyncratic
volatility risks. Consistent with the previous studies of the market index, we find the price of
the volatility risk to be negative, λ = −1.21. The unconditional mean of the market variance
under P and Q are θ = 0.037 and θ̃ = 0.061. Moreover, the speeds of mean reversion of
the market volatility dynamics are κ = 3.157 and κ̃ = 1.94 under the P and Q dynamics,
respectively. These parameter estimates are consistent with those of other studies such as
CFJ.

In our estimations we set the market equity risk premium equal to the annual sample average
µ = 0.078. Moreover, instead of estimating µi for each firm, we run a regression of the equity
return on the market excess return, and we set µi equal to the OLS alpha of the stock.

The unconditional idiosyncratic variance means are mostly larger than that of the market.
Under the physical distribution they range from θi = 0.034 for MMM to θi = 0.146 for HPQ.
The average θi for the firms in our sample is 0.068. On the other hand, the speed of mean
reversion of equity idiosyncratic variances is much lower than that of the index for all stocks
in the sample. It ranges from κi = 0.138 for IBM to κi = 1.678 for AA, with an average of
0.701 for all stocks. The price of idiosyncratic variance risk varies substantially among the
firms in our sample, and is of different signs for different stocks. Alcoa has the lowest price
of idiosyncratic variance risk λi = −0.872, and XOM has the largest with λi = 1.145. The
average absolute value of the price of idiosyncratic variance is 0.213.

Consistent with the literature, ρ = −0.494 is large and negative, capturing the so called
leverage effect. The correlation between the shocks to equity return and the shocks to
idiosyncratic variance is negative for all stocks except for CSCO, HPQ, IBM, MSFT, and
UTX. It ranges from ρ = −0.649 for JPM to ρ = 0.1 for CSCO. Moreover, the beta estimates
seems reasonable, ranging from βi = 0.55 for MCD to βi = 1.23 for AXP. The average beta
of the firms in our sample is 0.91.

3.3.2 Filtered Spot Idiosyncratic Variances

As described before, in our estimation we filter the unobserved market variance and the equity
idiosyncratic variances from the returns, under both P and Q measures. Table 5 presents
the average, standard deviation, minimum, and maximum spot idiosyncratic variance of all
firms during the time period in our sample. In the top row we also report the same statistics
for the spot index variance.

In Table 6 we present the correlation matrix of the spot idiosyncratic variances, as well as
the market spot variance. We can see that there is high degree of correlation between the
spot idiosyncratic variances, and all pairwise correlations are positive. The average pairwise
correlation between the equity spot idiosyncratic variances is 58%, and the average pairwise
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correlation of equity spot idiosyncratic variance with market spot variance is 43%. These
results show that there is a common structure in idiosyncratic variance levels of equities,
and the common factors might be priced. In the following sections, we conduct a systematic
analysis of the common structure in equity idiosyncratic variances.

3.4 The Common Structure in Idiosyncratic Volatilities

Several studies have found a common structure in idiosyncratic volatilities13. All of these
studies, however, have focused on the idiosyncratic volatilities estimated from the returns
under the physical distribution. Here we impose consistency in the parameters of the P- and
Q-distributions, we verify whether the same common structure exists in the idiosyncratic
volatilities estimated form the equity option prices under the Q distribution, and we compare
the common factors under both P - and Q-measures.

3.4.1 Implied Idiosyncratic Volatilities

Similar to the implied volatility of an option, we define the implied idiosyncratic volatility
(IIV ol) of an option as the idiosyncratic volatility that would make the model option price
equal to the observed price, given the estimated parameters and the estimated spot market
volatility. The IIV ol can be found as the solution to the following equation.

CO
i,t,n − CM

i,t,n( ˆ̃Θi,
ˆ̃Θ, v̂Qt , IIV oli,t,n) = 0 (3.26)

where, as before, ˆ̃Θ and ˆ̃Θi are the estimated Q-measure parameters of the market and
equity models, respectively, and v̂Q is the estimated spot market variance under the risk-
neutral measure. For every option written on every stock in our sample we find the IIV ol as
described above, and we run the following two regressions on every day, one for the implied
idiosyncratic volatilities and one for the total implied volatilities.

IIV oli,n,t = aIV oli,t + bIV oli,t · (
Si,t
Ki,n

) + cIV oli,t · (DTMi,n) + εi,n,t (3.27)

IVi,n,t = aIVi,t + bIVi,t · (
Si,t
Ki,n

) + cIVi,t · (DTMi,n) + εi,n,t (3.28)

Where, i denotes the stock, and n denotes the option contract available for that stock on day
t, with strike price Ki,n and time to maturity DTMi,n. The coefficients, aIV oli,t , bIV oli,t , cIV oli,t in
the regression (3.27) represent measures of idiosyncratic volatility level, moneyness slope, and
term structure slope, respectively. Moreover, the coefficients, aIVi,t , b

IV
i,t , c

IV
i,t in the regression

(3.28) represent measures of implied volatility level, moneyness slope, and term structure
slope, respectively. So, after estimating the regression coefficients for every stock-day we

13See Duarte et al. (2012) and the references within.
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have three matrices, {aIV oli,t }, {bIV oli,t }, and {cIV oli,t }, for the implied idiosyncratic volatilities,
and three matrices, {aIVi,t }, {bIVi,t }, and {cIVi,t }, for the implied volatilities.

We run a similar regression as in (3.28) for the index options to get the level, slope, and the
term structure slope of the market implied volatilities, represented by {at}, {bt}, and {ct},
respectively.

IVn,t = at + bt · (
St
Kn

) + ct · (DTMn) + εn,t (3.29)

In what follows, we present a principal component analysis (PCA) of the regression coeffi-
cients estimated in (3.27) - (3.29).

Common Structure in Levels

As expected, the PCA of the implied volatility levels indicates a strong factor structure. The
first two principal components explain 79% and 11% of the variations across all stocks, re-
spectively, and the first component has a 90% correlation with the market’s implied volatility
levels. What is surprising is that after accounting for the common market factor in equity re-
turns, there is still a strong factor structure remaining in the implied idiosyncratic volatility
levels. Principal component analysis of the IIV ol levels shows that the first two principal
components explain 58% and 23% of the cross-sectional variations, respectively. Table 7
presents the loadings on the first two components, as well as the percentage of variation cap-
tured by each component. The loadings on the first factor are positive for all stocks, while
the loadings on the second factor are positive and negative for different stocks. Moreover,
both factors are sizeable in terms of explaining the variation, and the fact that the loadings
on the second factor take on different signs for different stocks, suggest that it may be related
to firm specific characteristics.

The first common component of the IIV ol levels has a 99% correlation with the average
implied idiosyncratic volatility level of all firms. Further, the first and the second com-
mon components have correlations of 65% and 55% with the index implied volatility levels,
respectively.

Common Structure in Moneyness Slope

The first two principal components of the implied volatility slopes explain 32% and 8% of
the cross-sectional variation, and the first common component has a 38% correlation with
the market’s implied volatility slope. After removing the common market factor from the
returns, there are still commonalities in the moneyness slopes of the implied idiosyncratic
volatilities. PCA of the IIV ol slopes shows that the first two principal components explain
48% and 6% of the cross-sectional variations, respectively. So the percentage of the variation
explained by the first common component of slopes is higher for IIV ol than for IV . Table
8 presents the loadings on the first two components, as well as the percentage of variation
captured by each component. Similar to those of the levels, the loadings on the first factor
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are positive for all stocks, while the loadings on the second factor are positive and negative
for different stocks, although the signs are not consistent with those of the levels.

The first common component of the IIV ol moneyness slopes has a 99% correlation with the
average implied idiosyncratic volatility slopes of all firms. Further, the first and the second
common components have a correlation of 42% and 8% with the index implied volatility
slope, respectively.

Common Structure in Term Structure Slope

The first two principal components of term slope of the implied volatilities explain 57% and
9% of the variations, respectively, and the first principal component has a 78% correlation
with the market’s term slope. Moreover, the two first principal components of the IIV ol
term sloes explain 61% and 7% of the variations, respectively. As with the results for the
moneyness slope, the proportion of variation explained by the first two principal components
of the term slopes are higher for IIV ol than IV . Table 9 presents the loadings on the first
two components, as well as the percentage of variation captured by each component. Like
before, the loadings on the first common component are all positive, while the loadings on
the second components have different signs for different stocks.

Moreover, the first principal component has a 99% correlation with the average implied
idiosyncratic volatility term slope of all firms. Further, the first and the second common
components have a correlation of 78% and -13% with the index implied volatility term slope,
respectively.

These results show that after removing the common market factor from the returns, there is
still a strong common factor structure in implied idiosyncratic volatilities. This is consistent
with the findings of Herskovic et al. (2013) who study the common structure in idiosyncratic
volatilities by looking at the firms’ fundamentals. Our findings complement the empirical
literature that shows there are common factors in the idiosyncratic volatilities of stock returns
under the P distribution, by showing that the same factor structure is evident in equity
options prices.

3.4.2 Filtered Spot Idiosyncratic Volatilities

So far our results indicate the existence of a common structure in the equity idiosyncratic
volatilities obtained from the equity option prices. While there appears to be a market
volatility factor in the cross-section of equity idiosyncratic volatilities, the average idiosyn-
cratic volatility of all firms shows stronger correlation with the common components of
the implied idiosyncratic volatilities. Moreover, the existence of the common structure is
strongest in the levels of the implied idiosyncratic volatilities. Here, we further investi-
gate the common structure in idiosyncratic volatilities by analyzing the spot idiosyncratic
volatility levels filtered from the returns.

In our framework, idiosyncratic variance of a stock is a state variable. In section 3.2 we
discussed the filtration of this unobserved state variable from the equity returns using the
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physical and risk-neutral structural parameters, and we presented the properties of these
estimated spot idiosyncratic volatilities. Here we perform principal component analysis of
the filtered idiosyncratic volatilities under the P and Q distributions. These idiosyncratic
variances are estimated from the returns, based on the P- and Q-measure parameters. The
spot idiosyncratic volatilities are theoretically the same under the two distributions; however
over any discrete interval, such as a day, they would be different due to the price of the
idiosyncratic volatility risk.

Principal component analysis of the spot idiosyncratic volatilities under the physical distri-
bution indicates that the first two principal components explain 57% and 30% of the cross-
sectional variations, respectively. Table 10 presents the loadings on the first two components
for all stocks. The loadings on the first principal component are positive for all stocks, while
the loadings on the second principal component have different signs for different stocks. The
first principal component has a 98% correlation with the average idiosyncratic volatility.
Moreover, the first and the second principal components have correlations of 68% and 48%
with the spot market volatilities, respectively.

Principal component analysis of the return-based idiosyncratic volatilities under the Q-
distribution yields qualitatively similar results to those under P. The first two principal
components explain 55% and 31% of the variations, respectively. The first principal compo-
nent has a 98% correlation with the average idiosyncratic volatility. Moreover, the first and
the second components have a correlation of 67% and -50% with the market spot volatility
under the risk-neutral distribution. Table 10 presents the loading on the first two compo-
nents. The loadings on the first principal component are very close for all stocks under the
two distributions. On the one hand, the loadings on the second principal component, while
very close in absolute value, are of the exact opposite sign under the P- and Q-distributions.
In other words, the second principal component under the P measure is almost perfectly and
negatively correlated with that under the Q measure. This estimation is very similar to the
one done in 3.4.1, and it is not surprising that the results are very similar. Indeed, the data
used for the PCA here is the same one that was used to generate the model parameters,
which in turn were used to generate the data for the PCA of 3.4.1. The interest of Section
3.4.1 is that it shows that the commonality exists across slope and term structure.

The average idiosyncratic volatility seems to explain the cross-sectional variation of the
idiosyncratic volatilities very well, and it is highly correlated with the market volatility, which
is also highly correlated with the first two components of the idiosyncratic volatilities. We
regress the market spot variance on the average idiosyncratic variances to find the component
of the market variance that is orthogonal to the average idiosyncratic variance. The R2 of
the regression is 30% and 26%, under the P and Q distributions, respectively. Moreover, the
vector of the residuals, which is the component of the market variance that is orthogonal to
the average idiosyncratic variance, denoted by F orth

P , has a 69% correlation with the second
principal component of the idiosyncratic variances. Under the Q distribution, the orthogonal
component, denoted by F orth

Q , has a -71% correlation with the second principal component.
Our results suggest that the average idiosyncratic variance and the component of the market
spot variance that is orthogonal to it are good proxies for the common principal components
of the equity idiosyncratic volatility levels.
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4 Cross Section of Equity Returns

The previous sections show that there is a common factor structure in the idiosyncratic
volatilities. The existence of common factors among equity idiosyncratic volatilities does
not necessarily mean that idiosyncratic volatility is priced. If however, there are one or
more systematic risk factors missing from the model, the exposure to those factors would
be captured by the idiosyncratic volatilities, and the common components of idiosyncratic
volatilities are related to the variances of the missing systematic factors. In our one factor
model, the equity return is represented as follows:

ri = µi + βi(rm − rf ) + εi (4.1)

If the market excess return is not the only systematic risk factor and there are K factors,
F1, . . . , FK , missing from the model, then the residuals in (4.1) are in fact equal to:

εi = βi,1F1 + . . .+ βi,KFK + ui (4.2)

where, ui is the true idiosyncratic residual. So, the idiosyncratic variance, as defined in a
one factor model, is related to the variance of the missing factors and their corresponding
loadings, as follows:

var(εi) = β2
i,1 · var(F1) + . . .+ β2

i,K · var(FK) + var(ui) (4.3)

Moreover, if idiosyncratic volatility is priced due to exposure to the missing factors, we would
expect the common components of the equity idiosyncratic volatilities to help explain the
cross-section of equity returns. This is what we investigate in this section. In particular, we
test whether the average idiosyncratic variance, AIV , that we found to proxy for the first
principal component of the idiosyncratic variances has any explanatory power in explaining
the cross section of the 25 Fama-French portfolios, which are formed on size and book-to-
market. We follow the standard two-step procedure for cross-sectional asset pricing. First,
we run a time series regression of the excess portfolio returns on the Fama-French factors,
as well as the proposed AIV factor for each portfolio.

rep,t = ap + bmp · (rmt − rt) + bsmbp · rSMB
t + bhmlp · rHML

t + bAIVp · AIVt + εp,t (4.4)

where, rep,t is the excess return of portfolio p at time t, (rm − r) is the excess market return,
and rSMB and rHML are the returns on the size (small-minus-big) and value (high-minus-
low) factors, respectively.14 Moreover, AIV is the average idiosyncratic variance of the firms
in our sample, and is estimated as described in the previous sections. Figure 1 presents the
coefficients of the AIV factor in the time series regressions (4.4). The coefficients of AIV are

14Data on these portfolios and factors are downloaded from Kenneth French’s website.
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all positive, and even in the presence of the Fama-Franch factors, are significantly different
from zero for 20 out of the 25 portfolios.

In the second step, we regress the average portfolio excess returns on the time series coefficient
estimates:

r̄ep = γ0 + γm · b̂mp + γsmb · b̂smbp + γhml · b̂hmlp + γAIV · b̂AIVp + εp (4.5)

In order to compare the explanatory power of AIV to that of the Fama-French factors,
we use different linear combinations of the factors in (4.5). In Table 11 we present the
regression results. As we see in the table, the AIV factor premium is significantly and
economically different from zero. Moreover, when added to the Fama-French model, the
AIV factor reduces the pricing error from 0.137% per day to 0.11%, and it increases the
adjusted R2 from 82% to 84%. Further, the combination of the market factor and the AIV
factor performs better than the combination of market and SMB, as well as the market and
HML, in terms of explaining the cross sectional variations of the 25 portfolios’ returns. It
is worth noting that our sample contains only 27 equities, and our definition of the average
idiosyncratic variance is rather narrow. We would expect that as the sample size gets larger,
the AIV factor would be able to better explain the cross section of equity returns.

In our sample the risk premium of SMB is not significantly different from zero in any of
the regressions. However, HML has a positive and significant risk premium. The AIV also
carries a positive risk premium equal to 0.01% per day. Moreover, the fact that AIV does not
drive out the HML in the regression where all factors are present, combined with the fact
that SMB has an insignificant risk premium in all regressions, suggests that the explanatory
power of AIV comes from exposure to missing systematic risk factors other than SMB and
HML.

5 Idiosyncratic Variance Risk Premium

So far we have shown that equity idiosyncratic variance is priced, and that there is factor
structure among idiosyncratic variances. Moreover, we showed that the common component
of idiosyncratic variances is a priced factor in the cross section of equity returns, and that
it can reduce the pricing error when added to the Fama-French factors. In this section we
discuss how we can create portfolios that are only exposed to the idiosyncratic variance risk
of an equity, and we present evidence that for the majority of the equities in our sample, the
mean return of these portfolios is significantly different from zero. Moreover, we present a
measure of idiosyncratic variance risk premium, and we investigate whether this risk premium
is explained by the usual equity risk factors.
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5.1 Evidence from Portfolio Returns

Equity options are investment assets, and their expected returns are of particular interest
to practitioners and academics. In a stochastic volatility framework, the underlying price
and its volatility are state variables, and the expected index option return depends on the
risk premiums associated with them. In our framework, idiosyncratic volatility is also a
state variable, and since we show that it is priced, its risk premium would be a part of
the expected equity option return. The following proposition provides an expression for the
expected index and equity option returns under the physical distribution.

Proposition 2. For a derivative f(t, S, v) written on the index with price S and variance v
at time t, the instantaneous expected excess return on the derivative contract is given by:

1

dt
EP
t [
df

f
− rdt] = fs

St
f

(µ− r) + fv
1

f
λvt (5.1)

and for a derivative f i(t, Si, vi) written on the equity with price Si and total variance vi at
time t, the instantaneous expected excess return on the derivative contract is given by:

1

dt
EP
t [
df i

f i
− rdt] = f isi

Si,t
f i
(
(µi − r) + βi(µ− r)

)
+ f ivi

1

f i
(β2

i λvt + λiξi,t) (5.2)

where, fs, fv, f
i
si

, and f ivi represent partial derivatives, and the structural parameters and
state variables are as defined before.

Proof. See Appendix B.

So, the expected excess return of an equity option depends on the equity and variance risk
premiums of the index through the equity beta, as well as on the idiosyncratic return and
idiosyncratic variance risk premiums.

Now consider a delta hedged portfolio of an index option and the index, denoted by π.
Similarly we construct a delta hedged portfolio of an equity option and the underlying stock,
denoted by πi. These portfolios are by construction insensitive with respect to the changes in
the underlying asset’s price. Using the results of Proposition 2, the instantaneous expected
excess return on these delta neutral portfolios can be shown to be the following.

1

dt
EP
t [
dπt
πt
− rdt] = fv

1

πt
λvt (5.3)

1

dt
EP
t [
dπit
πit
− rdt] = f ivi

1

πit
(β2

i,tλvt + λiξi,t) (5.4)

The portfolio π’s return depends only on the market variance risk premium, while the return
of portfolio πi depends on the market variance risk premium through the equity beta, as
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well as on the idiosyncratic variance risk premium. So we can create a portfolio by taking
positions in π and πi, that is insensitive with respect to the market variance, and is only
exposed to the idiosyncratic variance risk. Consider a hedge portfolio, Π, that consists of y
units of a delta hedged index option π, and x units of a delta hedged equity options πi. The
portfolio value at any time is the following:

Πt = xt · πi + yt · πt (5.5)

The instantaneous expected excess return of this portfolio can be found directly from (5.3)
and (5.4), and it is equal to:

1

dt
EP
t [
dΠt

Πt

− rdt] =
(

(xtf
i
vi
β2
i,t + ytfv)λvt + xtf

i
vi
λiξi,t

) 1

Πt

(5.6)

Our goal is to choose x and y at any time so that the portfolio Π is not exposed to the
market variance risk premium. This can be accomplished if x and y at any time have the
following relationship.

yt = −xt
f ivi
fv
β2
i,t (5.7)

At any time t we choose xt =
1

f ivi
and yt =

−1

fv
β2
i,t. So, according to (5.6) the instantaneous

expected excess return on our hedge portfolio would be:

1

dt
EP
t [
dΠt

Πt

− rdt] = λiξi,t
1

Πt

(5.8)

Therefore, a portfolio with a long position in
1

f ivi
units of a delta neutral equity option, and

a short position in
β2
i,t

fv
units of a delta neutral index option is instantaneously insensitive

with respect to the changes in the equity price, index price, and the market variance. The
only risk that this portfolio bears is the idiosyncratic variance risk of the equity, and the
return on this portfolio would be the idiosyncratic volatility risk premium.

In what follows, we describe how we form and rebalance portfolios that only loads on the
idiosyncratic variance risk premiums of equities, and we investigate whether the return on
these portfolios are statistically and economically different from zero. For every firm in
our sample, as well as for the market index, we create hedge portfolios using options with
30 days to maturity, and with three moneyness rations 1, 1.025, and 1.05 (1, 0.975, and
0.95) for calls (puts), respectively. The detail description of the data used and the way the
portfolios are formed and rebalanced are presented in Appendix C. If the equity idiosyncratic
variance bears a risk premium, we would expect these portfolios to have mean returns that
are significantly different from zero.
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5.1.1 Portfolio Returns

In tables 12 and 13 we present the mean annualized returns of the hedge portfolios for calls
and puts, respectively. Present in the tables are also the t-statistics for the null hypothesis
that mean portfolio return is zero. These portfolios are by construction only exposed to
the idiosyncratic variance risk of the equity, and a significant mean portfolio return is an
indication of a non-zero idiosyncratic volatility risk premium. There is quite a bit of variation
across call and put portfolios, and across different moneyness rations. For call portfolios,
the mean returns are of different signs for different equities, and they generally decrease as
the moneyness increases. In the last row of the table we also report the number of firms for
which the mean portfolio return is significantly different zero. For call portfolios, as we move
further away from the money, the number of firms with significant idiosyncratic volatility
risk premium decreases.

Put portfolios also indicate positive and negative idiosyncratic volatility risk premiums for
different stocks. The number of stocks with significant idiosyncratic volatility risk premium,
as evident from the mean put portfolio returns, is large for any moneyness ratio. In general,
the results obtained from the put portfolios are more indicative of the significant equity
idiosyncratic risk premium.

It should be noted that, in our portfolio rebalancing we do not take into account the transac-
tion costs. We merely provide these results as indication of non-zero idiosyncratic volatility
risk premium, and our portfolio formation and rebalancing is a statistical procedure for high-
lighting this evidence, rather than an implementable trading strategy. Motivated by these
results, in the next section, we proceed with introducing a measure of idiosyncratic volatility
risk premium, and we analyze the properties of these risk premiums for the firms in our
sample.

5.2 Measure of Idiosyncratic Volatility Risk Premium

Here we present a measure of idiosyncratic variance risk premium, and investigate whether
is it statistically and economically significant, and whether it can be explained by the usual
equity risk factors. The instantaneous idiosyncratic variance risk premium in our modeling
framework is:

EP
t [dξt]− EQ

t [dξt] = λiξt (5.9)

The idiosyncratic variance risk premium (RP) at any time t over a discrete time interval of
length T − t can be obtained as the difference between the expected integrated idiosyncratic
variance under physical and risk-neutral distributions.
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IV RPi,t =
1

T − t
EP
t

[ ∫ T

t

ξi,sds
]
− 1

T − t
EQ
t

[ ∫ T

t

ξi,sds
]

=
(
θi +

1− e−κi(T−t)

κi(T − t)
(ξPi,t − θi)

)
−
(
θ̃i +

1− e−κ̃i(T−t)

κ̃i(T − t)
(ξQi,t − θ̃i)

) (5.10)

Where, IV RPi,t is the idiosyncratic variance RP of stock i, ξPt and ξQt are the estimated spot
idiosyncratic variances at time t under P and Q, and the rest of the structural parameters
are as defined before. In our calculations we choose T to be 30 days, and we calculate the
annualized 30-day idiosyncratic variance RP. We also calculate the 30-day market variance
risk premium as:

MVRPt =
1

T − t
EP
t

[ ∫ T

t

vsds
]
− 1

T − t
EQ
t

[ ∫ T

t

vsds
]

=
(
θ +

1− e−κ(T−t)

κ(T − t)
(vPt − θ)

)
−
(
θ̃ +

1− e−κ̃(T−t)

κ̃(T − t)
(vQt − θ̃)

) (5.11)

Where, MVRPi,t is the market variance RP and, vPt and vQt are the estimated spot market
variances at time t under P and Q. The descriptive statistics for the idiosyncratic variance
RP of each stock, as well as the market volatility RP, are presented in Table 14. We also
report in the last column the t-stat of the null hypothesis that the average idiosyncratic
variance RP is zero. Consistent with the estimation results for the structural parameters,
the average idiosyncratic variance of the stocks in our sample can take positive or negative
signs. Moreover, the mean RP is statistically different from zero for all stocks. Earlier
studies have found that the market variance RP is negative. Consistent with these previous
results15, the average market variance RP in our sample is -0.48% per annum, and it is
strongly significantly different from zero.

Principal component analysis of the idiosyncratic variance RP’s shows that the first two
principal components explain 70% and 20% of the variation, respectively. These results were
expected, since the RP’s reflect the difference between the P- and Q-estimates of the levels
of idiosyncratic variances, for both of which there is a high commonality as we saw before.
The first principal component has a 89% correlation with the average idiosyncratic variance
risk premium defined as follows.

AIV RPt =
1

N

N∑
i=1

IV RPi,t (5.12)

The first principal component of the idiosyncratic variance risk premiums is also highly cor-
related with the market variance risk premium with the correlation coefficient of -0.78%. We
regress the market variance risk premium on to the average idiosyncratic variance risk pre-
mium. With R2 = 75%, the average idiosyncratic variance risk premium is a strong predictor

15See Carr and Wu (2009), and Driessen et al. (2009).
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of the market variance risk premium. Moreover, the residuals of the regression, denoted by
F orth
RP , which is the component of market variance risk premium that is orthogonal to the
AIV RP has a correlation of 45% with the second principal component of the idiosyncratic
variance risk premiums. These results are qualitatively and quantitatively consistent with
those presented in the previous section.

5.2.1 Are Idiosyncratic Variance Risk Premiums Explained by the Usual Equity
Risk Factors?

In our modeling framework, the independent variation in idiosyncratic variance represents
an additional source of risk, independent from the equity return risk premium that is due
to covariation of the equity return and market return. Under the classical CAPM and its
extensions, idiosyncratic variance risk premium cannot come from an independent source
of risk, and can only come from the correlation between the idiosyncratic variance and the
market return. In this section we investigate whether the Fama-French three factors plus
the momentum factor can explain the variation in the idiosyncratic variance risk premiums.
For every firm in our sample we run the following regression:

IV RPi,t = ai + bmi · (rmt − rt) + bsmbi · rSMB
t + bhmli · rHML

t + bmomi · rmomt + εi,t (5.13)

where, IV RPi,t is the idiosyncratic variance risk premium of stock i at time t, and the rest of
the factors are as defined before. Table 15 presents the OLS coefficient estimates, the t-stats,
and the R2 of the regressions. As is evident from the R2, these equity risk factors cannot
explain the time-series variations in the idiosyncratic variance risk premiums. Moreover, the
coefficients of the market return and SMB factors are not significantly different from zero
for almost all of the stocks.

Idiosyncratic variance risk premium can also come from the correlation between the idiosyn-
cratic variance and the market variance. In a stochastic volatility model such as Heston
(1993), a negative market variance risk premium is generated because of the negative corre-
lation between the market variance and market return. Christoffersen et al. (2013) present a
pricing kernel in which both the equity premium and the variance premium have two distinct
components originating in preferences. So, if the idiosyncratic variance of a firm’s equity is
correlated with aggregate volatility, then the market variance risk premium should be able
to explain at least part of the variation in idiosyncratic variance risk premiums. To test this
conjecture we run the following regression:

IV RPi,t = ai + bi ·MVRPt + εi,t (5.14)

The results are presented in Table 16. The coefficient of the MVRP is significant for all
stocks except for JNJ. The R2’s are much larger compared to the previous regression, ranging
from zero for JNJ to 82% for CVX, and with the average R2 equal to 26%. Moreover, the
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coefficient of the MVRP is positive (negative) for stocks with negative (positive) average
idiosyncratic variance risk premium.

Motivated by our PCA results in the previous sections, we also test the explanatory power
of the average idiosyncratic variance risk premium, AIV RP , together with the component
of the market variance risk premium orthogonal to it (F orth

RP ) in the following regression:

IV RPi,t = ai + bAIV RP,i · AIV RPt + borth,i · F orth
RP + εi,t (5.15)

The two factors can significantly improve the R2 compared to the previous regressions. The
R2 now ranges from 10% for KO to 89% for CVX, with the average R2 equal to 51%.
Moreover, the coefficients as well as the intercept are significantly different from zero for all
stocks. The results are presented in Table 17.

6 Conditional Equity Betas

Stock betas are one of the most important measures of equity risk. The importance of stock
betas in corporate finance and asset pricing has motivated researchers to look for better
methods of estimating these variables. An accurate measurement of betas is crucial in many
applications such as cost of capital estimation and detection of abnormal returns. Stock
betas are usually estimated using historical returns on the stock and the market index.
There is a consensus that stock betas are time varying, and the popular approach to account
for the time variation is to use a rolling window of historical returns. There are other
sophisticated estimation methods based on historical betas to capture the time variation.
All these techniques are based on historical information, and the main premise is that the
future will be similar to the past.

Other proposed methods of estimating the equity betas use the information inherent in
option prices. Option prices contain information about the future distribution of the under-
lying asset, and incorporating this information can potentially lead to better estimates for
any variable, especially when the historical patterns are unstable or when there have been
structural breaks.

In estimating stock betas from option prices, a few important issues should be noted. First,
the information inherent in option prices is related to the risk neutral distribution of the
underlying asset. Since betas are ultimately used as a measure of equity risk under the
physical measure, a proper link should be made between the P and Q distributions, and the
premiums for the priced risks in the market should be taken into account.

Second, the consistency between the index option prices and equity option prices as well as
the consistency between the market’s P and Q distributions are very important. Driessen
et al. (2009) study the relationship between equity options and index options, and they find
structural differences which they explain by the existence of correlation risk. Bates (2000)
indicates that any successful option pricing model should be able to reconcile the P and Q
distributions of the underlying asset. Constantinides et al. (2011) show widespread evidence
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of mispricing in the index options resulting from the lack of consistency between the index
option and the underlying markets.

Several studies have proposed to use the option implied information in estimating betas.
French, French et al. (1983) compute betas based on historical correlations and the implied
volatilities of the market and the equity. Siegel (1995) proposes the creation a derivative
from which implied betas can be estimated. Perhaps most related to our study are two recent
papers by Chang et al. (2011), hereafter CCVJ, and Buss and Vilkov (2012), hereafter BV.

BV use implied volatilities of the market and equity along with a parametric model for
implied correlations, and estimate the betas. CCVJ show that in a one factor model, and
under the assumption of zero skewness for the idiosyncratic returns, the implied betas can
be estimated as the product of the ratio of equity to market implied skewness, and the ratio
of equity to market implied volatilities. They derive option implied moments of the equity
risk neutral distribution based on the method of Bakshi et al. (2003) using only one day of
observed option prices, and their estimation does not rely on historical returns.

All these papers estimate the equity beta as the product of the correlation between the market
and equity returns and the ratio of equity to market volatility, and the main distinguishing
feature among them is how the correlation is estimated. In this paper the equity betas appear
in equation (2.2) in the model and are estimated as part of the structural parameters in our
framework. The advantages of our beta estimates are as follows. First, since the beta enters
both the P- and Q-equity return dynamics explicitly, it is estimated directly, without making
any assumptions regarding the correlations. Moreover, since our estimation methodology
is based on the joint information in the stock returns and equity option prices, our beta
estimates take all available information from the P and Q distributions into account. In
Table 18 we present the estimated betas for the firms in our sample, based on the information
in returns alone, based on the information in option prices alone, and based on the joint
information. We also report the OLS betas.

Second, since we use an equity option pricing model that links the equity price dynamics
to the market price dynamics, the consistency between the index option market and eq-
uity option market is taken into account. Third, our option pricing model is based on the
assumptions regarding the physical dynamics of the equity price, and the explicit transfor-
mation to the risk neutral measure. So, betas are estimated taking into account the price
of market variance risk, as well as the price of idiosyncratic variance risk. The methods in
the previous studies that estimate the betas from the option markets use exclusively the
RN measure; since we are ultimately interested in the application of these betas under the
physical measure, these estimates might be biased because of the presence of the market risk
premiums.

In the model presented in this paper the betas are assumed to be constant. There is, however,
widespread agreement in the literature that equity betas are time varying. The reason that
betas change over time is the time variation in market volatility, stock volatility, and the
correlation between the market and stock returns. To capture the time variation in equity
betas and account for the conditionality, we propose the following procedure to estimate
betas.
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We fix the risk neutral structural parameters, ˆ̃Θ and ˆ̃Θi, that we estimated before for the
market dynamics and equity dynamics. Our parameter estimates are based on the full sample
of option prices for the index and the equities. Since the data generating process for the
stochastic volatility process of the market return and idiosyncratic return are assumed to
remain the same over time, and since the parameters are constant, we use the entire sample
to estimate these parameters to increase estimation precision.

On every day t in our sample and given the structural parameters of the market and of every
equity, excluding the constant beta estimate, and given the estimated spot market variance,
we can find the conditional beta and the spot idiosyncratic variance for every equity i using
the equity option prices observed at time t:

{ξ̂i,t, β̂i,t} = argmax
{ξi,t,βi,t}

∑Mi,t

n=1(CO
i,t,n − CM

i,t,n( ˆ̃Θi,
ˆ̃Θ, v̂Qt , ξi,t))

2/V ega2
i,t,n, t = 1, 2, . . . , T, i = 1, . . . , N. (6.1)

Where, as before, CO
i,t,n is the observed price, CM

i,t,n is the model price, and Mi is the number of
option contract with six months to maturity available for stock i at time t. The options used
in estimating the conditional betas are not in the sample that we used for our estimation
in previous sections. So, our estimation of betas is done out-of-sample. The choice of a
six-month horizon is to create a balance between the option liquidity that is largest for
short maturity, and the relevant horizon for firm risk, which is arguably considerably longer.
Moreover, given the estimated market and equity structural parameters, and given the spot
market variance, the estimation of beta on any day relies on the observed options on that day
alone. This feature is similar to that in CCJV, and allows for more reliable beta estimates
when new information is released about the firm.

In Table 19 we repost the mean, standard deviation, minimum and maximum of the con-
ditional betas for each stock. In the last column we also present the unconditional betas
estimated before for comparison. The mean conditional betas are larger than the uncondi-
tional ones for most of the firms. The average is 1.1 across the 27 stocks compared to the
average of 0.91 for the unconditional betas. Nonetheless, in almost all cases the mean of the
conditional betas lies within one standard deviation of its unconditional value.

7 Conclusion

We use a one factor model for equity return dynamics in which the idiosyncratic volatility of
the stock follows a stochastic process, and is allowed to be priced. We develop a method to
estimate the structural parameters as well as the spot idiosyncratic variances using the return
data and the option data. Our estimation is based on a joint likelihood function that has a
return component and an option component, while the structural parameters are internally
consistent between the physical and risk neutral measures. In a recent study Christoffersen
et al (2013) use the same model, but they assume that the idiosyncratic variance is not
priced. This assumption implies that the market return is the only priced risk factor, and
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that the one factor model is the correct model. In our estimation we show that the price of
idiosyncratic variance is significantly different from zero for all the 27 firms in our sample.

We calculate the implied idiosyncratic variance of the options in our sample, and we show
that even after removing the market factor from equity returns, there is still a strong fac-
tor structure in implied idiosyncratic variances. Our principal component analysis shows
that there is a strong factor structure in option implied levels, moneyness slopes, and term
structure slopes of idiosyncratic variances. We show that the average idiosyncratic variance,
AIV , of all stocks is a good proxy for the common factor. These findings complement the
literature that documents the existence of a common factors structure among idiosyncratic
variances under the physical distribution.

We show that if there are factors missing from our one factor model, the idiosyncratic variance
as defined in a one factor model, captures the exposure to the variance of the missing factors.
We show that the AIV factor has positive loadings in the time series regression of the 25
Fama-French value and size portfolios. Moreover, we show that the AIV factor reduces the
cross sectional pricing error of these portfolios when added to the Fama-French model. The
AIV has a significant and positive risk premium, and its cross sectional explanatory power,
in our sample period, is distinct from and more than that of the HML and SMB factors.

We derive the expected option return in our framework, and we discuss a trading strategy
involving the equity option, the underlying equity, the index option, and the index. These
portfolios are constructed and rebalanced in such a way that they are only exposed to the
idiosyncratic variance risk of the equity. We show that the mean returns on these portfolios
are significantly different from zero for the majority of the equities in our sample, which is
an indication of the existence of a premium for the idiosyncratic variance risk.

We propose a measure for the idiosyncratic variance risk premium, defined as the difference
between the P and Q expected integrated idiosyncratic variance. We show that the mean
idiosyncratic variance risk premium is significantly different from zero for the firms in our
sample, and that this risk premium is not explained by the usual risk factors. Moreover,
we show that the time series variations of idiosyncratic variance risk premiums are well
explained by the average idiosyncratic variance risk premium together with the component
of the market variance risk premium orthogonal to the average idiosyncratic variance risk
premium.

Finally, we discuss the implications of our model for the estimation of equity betas. The
equity beta in our model is estimated as part of the structural parameters, using the simulta-
neous information from returns and options. Moreover, we propose a method to characterize
the time variation in equity betas.

28



Appendix

A Proof of Proposition 1

The market index is assumed to follow the stochastic volatility model below:

dSt/St = (µ)dt+
√
vtdzt,

dvt = κ(θ − vt)dt+ σ
√
vtdwt

(A.1)

Using Girsanov’s theorem we can write the following transformation for the two Brownian
motions dz and dw.

dz = dz̃ − (ψ1 + ρψ2)dt,
dw = dw̃ − (ρψ1 + ψ2)dt

(A.2)

where, ψ1 and ψ2 are the price of risk for dz and dw, respectively, and ρ is the correlations
between the two Brownian motions. The drift of the index return dynamics under the risk
neutral measure is equal to the risk free rate, so we have the following restriction:

ψ1 + ρψ2 =
µ− r√

v
(A.3)

Moreover, we assume that the price of volatility risk is proportional to volatility. So we have
the second restriction as follows:

ρψ1 + ψ2 =
λ
√
v

σ
(A.4)

The unique prices of risk can be found from (A.3) and (A.4), and are the following:

ψ1 =
µσ − ρλv

σ
√
v(1− ρ2)

,

ψ2 =
λv − µρσ

σ
√
v(1− ρ2)

(A.5)

Replacing (A.2)-(A.5) into (A.1) yields the index return dynamics under the risk neutral
measure.

dSt/St = rdt+
√
vtdz̃t,

dvt = κ̃(θ̃ − vt)dt+ σ
√
vtdw̃t

(A.6)

where, κ̃ = κ+ λ, and θ̃ = κθ
κ+λ

.
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For the equity return dynamics we have the following dynamics under the physical measure:

dSi,t/Si,t = (µi)dt+ βi(dSt/St − rdt) +
√
ξi,tdzi,t,

dξi,t = κi(θi − ξi,t)dt+ σi
√
ξi,tdwi,t

(A.7)

Representing the prices of idiosyncratic shocks dzi and dwi by ψi1 and ψi2, respectively, we
have the following transformation using Girsanov’s theorem:

dzi = dz̃i − (ψi1 + ρiψ
i
2)dt,

dwi = dw̃i − (ρiψ
i
1 + ψi2)dt

(A.8)

Similar to the case of the market return dynamics, we apply the following restrictions to
the prices of risk, assuming that the price of idiosyncratic volatility risk is proportional to
idiosyncratic volatility.

ψi1 + ρiψ
i
2 =

µi − r√
ξi

,

ρiψ
i
1 + ψi2 =

λi
√
ξi

σi

(A.9)

solving for ψi1 and ψi1 we have the following prices of idiosyncratic risk.

ψi1 =
(µi − r)σi − ρiλiξi
σi
√
ξi(1− ρ2

i )
,

ψi2 =
λiξi − (µi − r)ρiσi
σi
√
ξi(1− ρ2

i )

(A.10)

Replacing (A.8)-(A.10) into (A.7) we have the following equity return dynamics under the
risk neutral measure:

dSi,t/Si,t = rdt+ βi(dSt/St − rdt) +
√
ξi,tdz̃i,t,

dξi,t = κ̃i(θ̃i − ξi,t)dt+ σi
√
ξi,tdw̃i,t

(A.11)

where, κ̃i = κi + λi, and θ̃i = κiθi
κi+λi

.

B Proof of Proposition 2

We derive the instantaneous return for the equity option. The return for index option can
be derived similarly. Let f i(t, Si, vi) be the price of a derivative whose price depends on the
spot price and spot variance of the equity. Applying Ito’s lemma to f i(t, Si, vi), we have:
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df i = f itdt+ f isidSi +
1

2
f isisidSidSi + f ividvi +

1

2
f ivividvidvi + f isividSidvi (B.1)

where, f ix and f ixy denote the first and second partial derivative of f with respect to x and xy,
respectively. Moreover, in our one factor model, total variance of the equity return is defined
as vi = β2

i v + ξi. Using (2.1)-(2.4) together with the pricing PDE, we have the following
equation for df i under the physical measure:

df i =

(
rf i − rSif isi − f

i
vi

(
β2
i κ̃(θ − v) + κ̃i(θ̃i − ξi)

))
dt+ f isidSi + f ividvi (B.2)

Note that our model implies that:

1

dt
EP
t [dSi] =

(
µi + βi(µ− r)

)
Si,

1

dt
EP
t [dvi] = β2

i κ(θ − v) + κi(θi − ξi)
(B.3)

Relations (B.3) together with (B.2) yields the following:

1

dt
EP
t [
df i

f i
− rdt] =

f isi
f i

(
1

dt
EP
t [dSi]− rSi) +

f ivi
f i

(
1

dt
EP
t [dvi]−

(
β2
i κ̃(θ̃ − v) + κ̃i(θ̃i − ξi)

))
(B.4)

which simplifies to:

1

dt
EP
t [
df i

f i
− rdt] = f isi

Si
f i

(
(µi − r) + βi(µ− r)

)
+ f ivi

1

f i
(β2

i λvt + λiξi,t) (B.5)

C Portfolio Formation and Rebalancing

The data that we use in this section is the same data described in section 3.1. Since equity
option data is relatively scant both in cross-sectional and maturity dimensions, we apply
a simple weighting schemes to derive option prices for the target values of moneyness and
maturity. First, we calculate the implied volatilities of the options. In the next step, for each
of the two maturities bracketing the target days-to-maturity of 30 days, for two values of a
given target moneyness, we derive averages of IVs weighted by the reciprocal of the absolute
distance from this target moneyness. Last, the two observations for IV weighted by the
reciprocal of the absolute distance from the target maturity of 30 days yield the final value
for IV that is subsequently inverted into the option price via the Black-Scholes formula.
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In cases where we had observations with at most three days from the target maturity and/or
at most 0.01 from the target moneyness, we used a single observation. In cases we had
no bracketing observations for a given target, we used a nearest neighbourhood value. For
the index, where we have richer data, in addition to the procedure above we also apply the
practitioner’s Black-Scholes via least squares and verify the sensitivity of the results to the
relatively crude approach by necessity applied to equities. We choose the target moneyness
ratios of 1, 1.025 and 1.05 (0.95, 0.975 and 1) for calls (puts). Standardization of option
contracts is necessary to insure that the variability of the portfolio returns is only due to
exposure to the risk factors. Note that the use the Black-Scholes formula to derive our target
prices leaves them free of the Black-Scholes assumptions since this formula is used merely as
a translation device. Once we obtain our daily option prices from cross-sections, we screen
them again by rejecting observations with ATM prices below 10 cents and whose ATM IV
is outside the range 5-150%. This last set of filters resulted in rejecting less than 0.1% of
firm-days.

On every day and for each target moneyness ratio we set up a zero-net-cost portfolio with a

long position in
1

f ivi
units of a delta hedged equity call (put) and a short position in

β2
t

fv
units

of a delta hedged index call (put), with the proceeds invested or borrowed at the risk free
rate, r. In our calculations we approximate f isi(fs) and f ivi(fv) by equity (index) option’s
Black-Shcoles delta and vega. Moreover, the equity beta is estimated using a rolling window
of 250 days historical returns on the equity and the market. The value of the hedge portfolio
at time t is:

Πt =
1

vegai,t
(f it −∆i,tSi,t)−

1

vegat
β2
i,t(ft −∆tSt) (C.1)

If Πt is positive we invest the proceeds at the risk free rate, and if it negative, we borrow this
amount at the risk free rate. So after one day the gain (loss) for our zero-net-cost portfolio
is:

Gt+1 = Πt+1 − Πt =
1

vegai,t

(
(f it+1 − f it )−∆i,t(Si,t+1 − Si,t)

)
− 1

vegat
β2
i,t

(
(ft+1 − ft)−∆t(St+1 − St)

)
− Πt(

r

252
)

(C.2)

We register the gain Gt+1, and repeat this exercise until it is done for every day in our sample.
This hedge portfolio is by construction insensitive with respect to the changes in the equity
price, index price and the market variance, and is only exposed to the idiosyncratic variance
risk of the equity. So, the daily gains can be thought of as excess dollar return for bearing
idiosyncratic volatility risk. In order to transform the excess dollar returns into percentage
return and since the option price is homogenous of first degree with respect to the initial
stock price, we scale the dollar returns by the initial stock price. Finally, we compound the
daily portfolio returns into monthly returns.
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Table 1: Company Names, Tickers, and the Number of Options

Number of Options

Company Name Ticker Calls Puts All

S&P500 Index SPX 97,355 70,934 168,289

Alcoa AA 52,254 45,251 97,505
American Express AXP 58,391 49,264 107,655
Boeing BA 60,897 52,182 113,079
Caterpillar CAT 57,977 50,036 108,013
Cisco CSCO 49,533 42,555 92,088
Chevron CVX 76,709 63,163 139,872
Dupont DD 68,408 57,032 125,440
Disney DIS 60,406 51,482 111,888
General Electric GE 64,687 52,571 117,258
Home Depot HD 59,296 50,778 110,074
Hewlett-Packard HPQ 50,888 44,397 95,285
IBM IBM 69,281 58,509 127,790
Intel INTC 49,624 42,572 92,196
Johnson & Johnson JNJ 84,686 67,461 152,147
JP Morgan JPM 61,264 49,993 111,257
Coca Cola KO 78,875 63,576 142,451
McDonald’s MCD 70,192 59,008 129,200
3M MMM 75,277 62,499 137,776
Merck MRK 67,354 55,852 123,206
Microsoft MSFT 56,630 47,837 104,467
Pfizer PFE 60,483 51,830 112,313
Procter & Gamble PG 84,061 67,733 151,794
AT&T T 74,071 58,506 132,577
United Technologies UTX 70,371 58,781 129,152
V erizon VZ 71,543 56,265 127,808
Walmart WMT 70,668 59,539 130,207
Exxon Mobil XOM 76,187 63,202 139,389

For each firm we present the name of the company, and its ticker symbol. We also report the number of
Calls, Puts, and the total number of options available in our sample for each firm.
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Table 2: Option Statistics: Calls

Ticker Avg. IV Min (IV) Max (IV) Avg. Delta Avg. vega Avg. DTM

SPX 0.180 0.073 0.750 0.417 198.015 80.608

AA 0.342 0.169 1.496 0.476 6.910 79.574
AXP 0.296 0.127 1.482 0.460 10.144 79.509
BA 0.293 0.161 0.896 0.461 10.666 78.889
CAT 0.309 0.160 1.033 0.466 11.417 78.849
CSCO 0.355 0.159 1.071 0.471 5.841 78.540
CVX 0.232 0.128 0.944 0.447 13.470 79.645
DD 0.259 0.123 0.923 0.459 8.852 80.528
DIS 0.283 0.069 0.959 0.466 6.720 81.597
GE 0.257 0.069 1.489 0.467 8.622 84.010
HD 0.294 0.153 1.009 0.464 7.310 80.183
HPQ 0.342 0.153 0.979 0.473 7.531 79.760
IBM 0.253 0.119 0.868 0.443 19.123 79.475
INTC 0.349 0.173 0.909 0.481 7.443 81.488
JNJ 0.199 0.097 0.708 0.438 11.388 82.155
JPM 0.293 0.112 1.489 0.461 8.993 79.048
KO 0.211 0.083 0.693 0.445 9.410 83.176
MCD 0.244 0.116 0.789 0.455 8.349 80.995
MMM 0.233 0.125 0.796 0.443 15.130 79.134
MRK 0.263 0.143 0.852 0.463 9.902 80.410
MSFT 0.290 0.122 0.879 0.475 9.099 83.745
PFE 0.272 0.142 1.010 0.471 7.145 84.019
PG 0.201 0.093 0.643 0.436 12.913 81.913
T 0.238 0.102 0.822 0.465 6.177 80.458
UTX 0.249 0.132 0.823 0.446 13.176 79.456
VZ 0.240 0.092 0.870 0.473 7.905 82.906
WMT 0.239 0.112 0.673 0.446 8.903 81.216
XOM 0.227 0.126 0.848 0.445 11.574 80.630

For each firm we report the average, minimum, and maximum implied volatility (IV ) for the call options.
In the last three columns we also report the average call delta, average vega, and average days-to-maturity
(DTM) of the calls. The implied volatilities and the options deltas are provided by OptionMetrics, while the
vega is calculated using Black-Scholes formula evaluated at the implied volatility of the options.

37



Table 3: Option Statistics: Puts

Ticker Avg. IV Min (IV) Max (IV) Avg. Delta Avg. vega Avg. DTM

SPX 0.208 0.089 0.784 -0.349 188.464 80.669

AA 0.354 0.174 1.484 -0.384 6.607 77.623
AXP 0.312 0.122 1.494 -0.379 9.826 78.367
BA 0.305 0.174 0.924 -0.380 10.172 78.019
CAT 0.324 0.179 1.026 -0.382 10.963 78.630
CSCO 0.365 0.163 1.096 -0.391 5.508 76.969
CVX 0.248 0.117 0.965 -0.366 12.955 79.686
DD 0.276 0.137 0.942 -0.373 8.537 80.319
DIS 0.300 0.143 0.987 -0.381 6.382 80.566
GE 0.277 0.071 1.496 -0.375 8.329 83.703
HD 0.309 0.140 1.020 -0.382 7.030 79.012
HPQ 0.352 0.164 0.920 -0.390 7.304 78.551
IBM 0.270 0.124 0.885 -0.372 18.553 79.914
INTC 0.358 0.164 0.900 -0.392 7.300 79.531
JNJ 0.220 0.096 0.768 -0.362 10.834 81.336
JPM 0.315 0.120 1.492 -0.375 8.848 79.156
KO 0.231 0.095 0.670 -0.367 9.005 82.628
MCD 0.263 0.125 0.699 -0.375 7.902 80.480
MMM 0.250 0.138 0.844 -0.367 14.682 80.075
MRK 0.279 0.091 0.881 -0.375 9.589 79.789
MSFT 0.306 0.112 0.913 -0.389 8.960 82.884
PFE 0.288 0.139 0.709 -0.383 6.984 84.079
PG 0.222 0.096 0.682 -0.361 12.427 81.336
T 0.260 0.103 0.836 -0.373 6.032 80.409
UTX 0.269 0.136 0.856 -0.372 12.667 79.524
VZ 0.262 0.109 0.896 -0.370 7.655 82.216
WMT 0.256 0.114 0.675 -0.373 8.557 80.655
XOM 0.243 0.128 0.953 -0.368 11.056 80.150

For each firm we report the average, minimum, and maximum implied volatility (IV ) for the put options. In
the last three columns we also report the average delta, average vega, and average days-to-maturity (DTM)
of the puts. The implied volatilities and the options deltas are provided by OptionMetrics, while the vega is
calculated using Black-Scholes formula evaluated at the implied volatility of the options.

38



Table 4: Market and Equity Models Parameter Estimates

Ticker µ κ θ σ ρ β λ κ̃ θ̃

SPX 0.078 3.157 0.037 0.318 -0.494 -1.211 1.946 0.061

AA 0.021 1.678 0.041 0.297 -0.277 1.09 -0.872 0.806 0.086
AXP 0.116 0.409 0.049 0.201 -0.355 1.23 0.013 0.422 0.048
BA 0.072 0.480 0.062 0.084 -0.521 1.06 0.040 0.519 0.057
CAT 0.152 0.719 0.063 0.138 -0.275 1.11 -0.012 0.707 0.064
CSCO 0.116 0.417 0.107 0.165 0.100 1.08 -0.013 0.405 0.111
CVX 0.118 1.583 0.042 0.185 -0.289 0.81 0.020 1.603 0.041
DD 0.050 0.378 0.053 0.090 -0.458 0.96 0.080 0.458 0.044
DIS 0.065 0.579 0.060 0.128 -0.269 1.07 0.055 0.634 0.054
GE 0.049 0.844 0.049 0.287 -0.204 0.86 -0.229 0.615 0.067
HD 0.117 0.801 0.101 0.242 -0.121 1.06 0.289 1.090 0.074
HPQ 0.061 0.330 0.146 0.148 0.052 1.14 0.234 0.565 0.086
IBM 0.145 0.138 0.078 0.068 0.046 0.97 0.024 0.162 0.066
INTC 0.111 0.677 0.126 0.185 -0.101 0.99 0.308 0.985 0.087
JNJ 0.087 0.713 0.038 0.086 -0.481 0.60 -0.282 0.431 0.063
JPM 0.084 0.785 0.130 0.326 -0.649 0.85 0.427 1.212 0.084
KO 0.055 0.365 0.049 0.080 -0.151 0.75 -0.100 0.265 0.067
MCD 0.121 1.645 0.055 0.182 -0.511 0.55 -0.543 1.101 0.081
MMM 0.085 0.239 0.034 0.057 -0.122 0.98 0.006 0.245 0.033
MRK 0.061 0.277 0.063 0.077 -0.231 0.89 0.092 0.368 0.047
MSFT 0.110 0.268 0.066 0.077 0.060 1.04 -0.053 0.216 0.082
PFE 0.078 0.760 0.089 0.143 -0.233 0.78 0.173 0.933 0.072
PG 0.102 0.346 0.044 0.080 -0.108 0.75 0.053 0.398 0.038
T 0.066 1.026 0.049 0.173 -0.362 0.81 -0.093 0.933 0.054
UTX 0.131 0.556 0.036 0.087 0.032 1.03 -0.115 0.441 0.046
VZ 0.075 1.228 0.059 0.192 -0.602 0.70 -0.117 1.111 0.065
WMT 0.120 0.991 0.039 0.139 -0.092 0.70 -0.366 0.625 0.061
XOM 0.115 0.699 0.106 0.191 -0.370 0.75 1.145 1.845 0.040

Average 0.092 0.701 0.068 0.152 -0.240 0.91 0.006 0.707 0.064
Min 0.021 0.138 0.034 0.057 -0.649 0.551 -0.872 0.162 0.033
Max 0.152 1.678 0.146 0.326 0.100 1.225 1.145 1.845 0.111

We use OTM options over the period 1996-2011 to estimate the market and equity parameters. The esti-
mation is based on a joint likelihood function that has a return component and an option component. The
estimation of the equity model is conditional on the estimates of the market model. For the market model,
µ is set to the sample average risk premium. For the equity model, µ is set equal to the intercept of the
CAPM regression of the equity returns on market excess returns. Equity beta is a free parameter and is
assumed constant.
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Table 5: Distributional Properties of Filtered Spot Idiosyncratic Variances

P-distribution Q-disribution

Ticker mean std min max mean std min max

SPX 0.0376 0.0342 0.0034 0.2608 0.0409 0.0394 0.0035 0.2956

AA 0.0942 0.0814 0.0083 0.4974 0.1078 0.1001 0.0091 0.6166
AXP 0.0750 0.0889 0.0008 0.4934 0.0711 0.0839 0.0008 0.4645
BA 0.0594 0.0280 0.0126 0.1362 0.0564 0.0264 0.0123 0.1313
CAT 0.0649 0.0323 0.0091 0.1564 0.0629 0.0308 0.0086 0.1443
CSCO 0.1311 0.1146 0.0138 0.4957 0.1292 0.1144 0.0134 0.4935
CVX 0.0396 0.0237 0.0079 0.1763 0.0384 0.0226 0.0079 0.1685
DD 0.0502 0.0305 0.0047 0.1286 0.0463 0.0281 0.0043 0.1204
DIS 0.0556 0.0383 0.0077 0.1409 0.0524 0.0360 0.0075 0.1345
GE 0.0638 0.0688 0.0016 0.4675 0.0643 0.0696 0.0016 0.4732
HD 0.0688 0.0535 0.0068 0.2583 0.0624 0.0478 0.0066 0.2350
HPQ 0.1089 0.0840 0.0105 0.3509 0.0968 0.0740 0.0102 0.3085
IBM 0.0512 0.0440 0.0050 0.1763 0.0485 0.0421 0.0049 0.1691
INTC 0.1267 0.0905 0.0168 0.4613 0.1138 0.0794 0.0159 0.4079
JNJ 0.0314 0.0200 0.0033 0.1009 0.0348 0.0230 0.0036 0.1118
JPM 0.1257 0.1356 0.0024 0.8304 0.1125 0.1160 0.0023 0.7225
KO 0.0327 0.0260 0.0036 0.1066 0.0340 0.0277 0.0036 0.1122
MCD 0.0543 0.0314 0.0067 0.1525 0.0596 0.0354 0.0071 0.1700
MMM 0.0272 0.0151 0.0076 0.0661 0.0259 0.0145 0.0074 0.0633
MRK 0.0516 0.0212 0.0127 0.1124 0.0475 0.0190 0.0119 0.1001
MSFT 0.0618 0.0439 0.0061 0.1778 0.0626 0.0450 0.0061 0.1820
PFE 0.0638 0.0340 0.0136 0.1535 0.0598 0.0315 0.0133 0.1442
PG 0.0328 0.0295 0.0037 0.1295 0.0312 0.0282 0.0036 0.1246
T 0.0551 0.0415 0.0023 0.1636 0.0550 0.0416 0.0024 0.1639
UTX 0.0342 0.0235 0.0058 0.1066 0.0348 0.0245 0.0058 0.1100
VZ 0.0555 0.0393 0.0023 0.1842 0.0560 0.0399 0.0021 0.1856
WMT 0.0519 0.0428 0.0060 0.1880 0.0564 0.0483 0.0061 0.2112
XOM 0.0481 0.0299 0.0047 0.2079 0.0381 0.0214 0.0042 0.1571

For every firm we report the mean, standard deviation, minimum, and maximum of time-series of the filtered
idiosyncratic variances. The spot idiosyncratic variance are filtered from the returns, based on the optimal
parameter estimates under the P and Q measures. In the top row we also report the statistics for the
time-series of the market spot variance.
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Table 7: PCA of Implied Idiosyncratic Variance Levels

Ticker 1st Component 2nd Component

AA 0.1407 0.4762
AXP 0.2624 0.4128
BA 0.1339 0.0320
CAT 0.1107 0.1676
CSCO 0.3199 -0.3363
CVX 0.0642 0.1247
DD 0.1494 0.0926
DIS 0.1836 -0.0227
GE 0.2323 0.2998
HD 0.2109 0.0100
HPQ 0.2347 -0.2954
IBM 0.2230 -0.1783
INTC 0.2650 -0.1442
JNJ 0.1507 -0.1072
JPM 0.2771 0.3544
KO 0.1775 -0.1058
MCD 0.1435 -0.0485
MMM 0.1114 -0.0485
MRK 0.1038 0.0509
MSFT 0.2414 -0.1407
PFE 0.1351 -0.0211
PG 0.1608 -0.0988
T 0.2238 -0.0279
UTX 0.1594 -0.0485
VZ 0.1953 -0.0095
WMT 0.2209 -0.1148
XOM 0.0751 0.0656

Average 0.1817 0.0125
Minimum 0.0642 -0.3363
Maximum 0.3199 0.4762

Variation
explained

58% 23%

Correlation
with the av-
erage implied
idiosyncratic
volatility level

99% 4.30%

Corrleation
with mar-
ket implied
volatility level

65% 55%

We report the loadings on the first two principal components of the implied idiosyncratic variance levels
obtained from the option prices. We also present the percentage of variance explained by the first two
components, as well as their correlations with average implied idiosyncratic variance level of all firms, and
with the implied variance levels of the market.
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Table 8: PCA of Implied Idiosyncratic Variance Moneyness Slopes

Ticker 1st Component 2nd Component

AA 0.0876 0.0617
AXP 0.1936 0.1124
BA 0.2002 -0.0591
CAT 0.2364 0.0158
CSCO 0.1815 -0.0252
CVX 0.1805 -0.0590
DD 0.1921 0.0414
DIS 0.1934 -0.0880
GE 0.1340 0.8307
HD 0.2016 -0.1263
HPQ 0.2016 -0.2163
IBM 0.2304 -0.1086
INTC 0.1591 -0.0009
JNJ 0.1870 0.1110
JPM 0.1520 0.0657
KO 0.1856 -0.0971
MCD 0.1271 -0.0581
MMM 0.2559 -0.1304
MRK 0.1877 0.0315
MSFT 0.2277 0.0553
PFE 0.1110 0.2855
PG 0.2846 0.0278
T 0.2084 -0.0101
UTX 0.2159 -0.2536
VZ 0.1580 0.0500
WMT 0.2057 0.0435
XOM 0.1718 -0.0113

Average 0.1878 0.0181
Minimum 0.0876 -0.2536
Maximum 0.2846 0.8307

Variation
explained

48% 6%

Correlation
with the av-
erage implied
idiosyncratic
volatility
moneyness
slope

99% 3.40%

Corrleation
with mar-
ket implied
volatility
moneyness
slope

42% 8%

We report the loadings on the first two principal components of the implied idiosyncratic variance moneyness
slopes obtained from the option prices. We also present the percentage of variance explained by the first
two components, as well as their correlations with average implied idiosyncratic variance moneyness slopes
of all firms, and with the implied variance moneyness slope of the market.
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Table 9: PCA of Implied Idiosyncratic Variance Term Structure Slopes

Ticker 1st Component 2nd Component

AA 0.1978 -0.4083
AXP 0.2834 -0.3145
BA 0.2173 0.0617
CAT 0.2234 -0.1185
CSCO 0.2523 0.4405
CVX 0.1471 0.0145
DD 0.1912 -0.0345
DIS 0.2364 0.0845
GE 0.1579 -0.2983
HD 0.1801 0.1234
HPQ 0.2554 0.3761
IBM 0.2317 0.0521
INTC 0.1682 -0.0250
JNJ 0.1208 0.0078
JPM 0.2145 -0.4184
KO 0.1430 -0.0096
MCD 0.1101 0.0332
MMM 0.2007 -0.0189
MRK 0.1747 0.0396
MSFT 0.2170 0.1780
PFE 0.1215 -0.0006
PG 0.1507 0.1007
T 0.1864 0.1056
UTX 0.2334 -0.1498
VZ 0.1546 0.0610
WMT 0.1282 0.0863
XOM 0.1519 0.0114

Average 0.1870 -0.0007
Minimum 0.1101 -0.4184
Maximum 0.2834 0.4405

Variation
explained

61% 7%

Correlation
with the av-
erage implied
idiosyncratic
volatility term
structure
slope

99% -0.12%

Corrleation
with mar-
ket implied
volatility term
structure
slope

78% -13%

We report the loadings on the first two principal components of the implied idiosyncratic variance term
structure slopes obtained from the option prices. We also present the percentage of variance explained
by the first two components, as well as their correlations with average implied idiosyncratic variance term
structure slopes of all firms, and with the implied variance term structure slope of the market.
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Table 10: PCA of Filtered Spot Idiosyncratic Variances

Physicla distribution Risk-neutral distribution

Ticker 1st Component 2nd Component 1st Component 2nd Component

AA 0.2395 0.3321 0.3087 -0.4391
AXP 0.2930 0.3277 0.2901 -0.3195
BA 0.1079 -0.0171 0.1070 0.0177
CAT 0.0918 0.0502 0.0908 -0.0433
CSCO 0.3541 -0.4436 0.3701 0.4550
CVX 0.0591 0.0642 0.0577 -0.0597
DD 0.1144 -0.0075 0.1113 0.0108
DIS 0.1429 -0.0720 0.1398 0.0754
GE 0.2505 0.2019 0.2658 -0.2126
HD 0.2070 -0.0619 0.1930 0.0648
HPQ 0.2562 -0.3417 0.2363 0.3092
IBM 0.1305 -0.1711 0.1331 0.1671
INTC 0.3324 -0.2861 0.3043 0.2617
JNJ 0.0570 -0.0506 0.0672 0.0614
JPM 0.4806 0.4829 0.4354 -0.4078
KO 0.0818 -0.0735 0.0903 0.0809
MCD 0.0981 -0.0490 0.1170 0.0582
MMM 0.0421 -0.0466 0.0423 0.0466
MRK 0.0721 0.0140 0.0670 -0.0095
MSFT 0.1595 -0.1389 0.1708 0.1508
PFE 0.1062 -0.0428 0.1018 0.0469
PG 0.0805 -0.0792 0.0817 0.0791
T 0.1506 -0.0670 0.1592 0.0721
UTX 0.0807 -0.0692 0.0880 0.0759
VZ 0.1436 -0.0366 0.1544 0.0403
WMT 0.1327 -0.1153 0.1598 0.1338
XOM 0.0859 0.0603 0.0611 -0.0357

Average 0.1611 -0.0236 0.1631 0.0252
Minimum 0.0421 -0.4436 0.0423 -0.4391
Maximum 0.4806 0.4829 0.4354 0.4550

Variation
explained

57% 30% 55% 31%

Correlation
with the av-
erage implied
idiosyncratic
volatility all
firms

98% -10.50% 98% 11.50%

Corrleation
with market
spot volatili-
ties

68% 48% 67% -50%

We report the loadings on the first two principal components of the spot idiosyncratic variance levels obtained
from the returns. We also present the percentage of variance explained by the first two components, as well
as their correlations with average spot idiosyncratic variances of all firms, and with the spot variances of the
market.
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Table 11: Cross-Sectional Test of Different Asset Pricing Models

1 p-val 2 p-val 3 p-val 4 p-val 5 p-val

intercept 0.00141 (0) 0.00145 (0) 0.00137 (0) 0.0012 (0) 0.0011 (0)
Mrkt -0.001 (0) -0.0011 (0) -0.00105 (0) -0.0009 (0) -0.0009 (0)
SMB 0.000076 (0.103) 8.60E-05 (0.079) 0.0001 (0.1248)
HML 0.0001 (0.12) 0.0001 (0.0407) 0.0001 (0.0226)
AIV 0.0001 (0.0326) 0.0001 (0.043)

Adj. R2 0.8233 0.796 0.8207 0.8347 0.8431

The table presents the factor risk premiums in the cross sectional regression of the Fama-French 25 portfolios
mean excess returns on the time series coefficient estimates. We run the regression for different combination
of the factors. Model 1 is the market and the SMB factor. Model 2 is the market and HML factor. Model 3
is the Fama-French model. Model 4 is the market and average idiosyncratic volatility, AIV , factor. Model
6 includes the Fama-French factors as well as the AIV factor. Presented in the table are also the P-values
of the estimated risk premiums, as well as the adjusted R2 for each model.
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Table 12: Mean Annualized Monthly Hedge Portfolio Returns: Calls

Ticker ATM t-stat OTM1 t-stat OTM2 t-stat

SPX -0.39 -15.00 -0.23 -9.00 0.26 1.23

AA 10.90 5.01 6.57 3.74 -4.14 -0.88
AXP 5.18 4.59 3.41 3.72 -2.16 -0.98
BA 0.32 0.66 -0.39 -0.87 -4.65 -1.87
CAT 1.65 2.50 0.43 0.79 -3.80 -1.47
CSCO 21.89 8.41 12.91 5.54 -13.90 -1.20
CVX 13.18 5.38 6.70 3.18 -11.49 -0.81
DD -2.57 -4.37 -2.51 -4.90 -6.45 -2.55
DIS 6.21 5.84 4.11 4.56 -2.39 -0.68
GE 0.60 0.40 -0.80 -0.63 -7.10 -2.31
HD 0.85 0.82 -0.85 -0.97 -8.87 -1.81
HPQ 8.14 6.08 5.02 4.16 -3.25 -0.56
IBM 0.89 4.45 0.32 1.55 -2.69 -1.79
INTC 12.62 6.80 6.79 4.13 -13.86 -1.45
JNJ -1.86 -5.65 -1.32 -5.22 -1.65 -1.12
JPM 5.00 2.37 4.00 2.51 0.51 0.13
KO -1.92 -4.76 -1.21 -3.60 -2.74 -1.74
MCD -1.39 -1.56 -1.05 -1.37 -0.58 -0.21
MMM -1.32 -5.28 -1.23 -5.68 -2.19 -1.95
MRK -5.78 -5.53 -2.13 -0.98 -5.23 -2.43
MSFT 0.48 0.21 -0.77 -0.45 -6.86 -1.58
PFE -8.90 -4.31 -7.46 -4.50 -12.89 -2.27
PG -2.24 -6.12 -1.60 -5.46 -2.58 -2.04
T -13.83 -2.73 -11.35 -2.44 -20.12 -3.08
UTX 0.48 1.62 0.14 0.53 -1.49 -1.39
VZ -19.71 -2.72 -15.47 -2.55 -14.33 -2.58
WMT 0.57 1.41 0.04 0.10 -3.98 -1.89
XOM -0.57 -1.59 -0.74 -2.52 -2.69 -1.95

Mean 1.07 0.06 -5.98
Max 21.89 12.91 0.51
Min -19.71 -15.47 -20.12

No. significant 19 17 7

The table presents the mean annualized monthly returns of the call portfolios for each firm in our sample.
The portfolios are constructed and rebalanced in such a way that are only exposed to the idiosyncratic
variance risk of the equity. For each firm we construct portfolios with target days-to-maturity of 30 days
and three different target moneyness rations of 1, 1.025, and 1.05, denoted by ATM, OTM1, and OTM2,
respectively. For each portfolio we also report the t-statistic of the null hypothesis that the mean return is
zero. For each moneyness ratio we also report the minimum, maximum and mean returns, as well as the
number of firms with returns significantly different from zero.
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Table 13: Mean Annualized Monthly Hedge Portfolio Returns: Puts

Ticker ATM t-stat OTM1 t-stat OTM2 t-stat

SPX 0.25 13.32 -0.81 -20.49 -1.14 -11.98

AA -2.28 -1.53 40.10 8.11 55.60 5.90
AXP -2.68 -2.90 12.70 7.97 14.87 6.01
BA 1.35 3.64 3.91 6.32 -0.10 -0.10
CAT 0.08 0.14 5.58 6.32 0.58 0.33
CSCO -11.86 -9.40 28.01 8.01 33.75 4.49
CVX -7.09 -4.55 12.53 4.69 5.26 0.85
DD 4.17 9.21 7.46 11.63 1.72 1.52
DIS -0.70 -0.86 9.08 7.94 4.75 2.33
GE 2.50 1.46 16.65 7.16 15.51 4.99
HD -0.03 -0.04 3.67 3.45 -8.42 -4.77
HPQ -1.79 -2.45 13.87 8.27 11.80 3.69
IBM -0.18 -1.45 0.89 3.06 -1.46 -2.82
INTC -3.71 -3.30 22.69 13.07 16.63 3.94
JNJ 2.08 6.32 0.69 1.32 -1.88 -2.12
JPM -0.13 -0.10 18.69 8.74 14.88 3.75
KO 2.49 7.51 0.30 0.60 -4.14 -4.88
MCD 2.37 3.28 -0.40 -0.50 -9.59 -8.10
MMM 1.47 7.63 0.54 1.92 -3.22 -7.09
MRK 6.64 5.57 3.94 4.13 -4.92 -3.73
MSFT 2.39 0.88 11.44 4.29 4.61 1.86
PFE 11.83 5.99 10.79 5.26 -8.20 -3.09
PG 2.37 7.05 -0.63 -0.72 -5.52 -4.04
T 8.93 4.86 7.89 4.20 -1.58 -0.56
UTX 0.64 2.70 2.49 5.92 -1.16 -1.44
VZ 12.11 5.40 5.41 3.34 -9.48 -4.14
WMT 0.18 0.72 1.57 2.09 -3.65 -2.80
XOM 1.89 6.54 2.20 5.26 -3.46 -4.24

Mean 1.22 8.97 4.19
Max 12.11 40.10 55.60
Min -11.86 -0.63 -9.59

No. significant 18 22 20

The table presents the mean annualized monthly returns of the put portfolios for each firm in our sample.
The portfolios are constructed and rebalanced in such a way that are only exposed to the idiosyncratic
variance risk of the equity. For each firm we construct portfolios with target days-to-maturity of 30 days
and three different target moneyness rations of 1, 0.975, and 0.95, denoted by ATM, OTM1, and OTM2,
respectively. For each portfolio we also report the t-statistic of the null hypothesis that the mean return is
zero. For each moneyness ratio we also report the minimum, maximum and mean returns, as well as the
number of firms with returns significantly different from zero.
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Table 14: Idiosyncratic Variance Risk Premiums

Ticker Mean (%) std (%) Skewness Kurtosis t-stat

SPX -0.48 0.65 -3.675 18.687 -46.34

AA -1.63 2.17 -3.204 14.014 -47.03
AXP 0.38 0.52 2.843 12.005 46.17
BA 0.30 0.19 0.513 2.595 97.83
CAT 0.19 0.25 3.064 13.951 48.49
CSCO 0.18 0.25 2.447 10.819 45.06
CVX 0.12 0.14 2.759 11.447 53.82
DD 0.39 0.30 1.088 4.296 81.52
DIS 0.33 0.30 1.334 4.819 67.97
GE -0.10 0.22 -3.757 21.760 -28.17
HD 0.69 0.68 1.328 3.834 63.26
HPQ 1.29 1.23 1.313 4.173 65.45
IBM 0.27 0.24 1.050 3.996 69.55
INTC 1.39 1.27 1.273 3.861 68.98
JNJ -0.37 0.42 -2.181 9.387 -55.86
JPM 1.47 2.23 3.252 14.382 41.32
KO -0.14 0.30 -3.273 16.391 -30.26
MCD -0.62 0.50 -1.267 4.292 -77.25
MMM 0.13 0.09 0.622 2.168 92.34
MRK 0.42 0.31 1.477 5.385 85.48
MSFT -0.09 0.31 -2.090 10.644 -17.41
PFE 0.43 0.32 1.071 3.770 83.00
PG 0.17 0.15 0.813 2.552 68.90
T -0.02 0.10 0.032 7.750 -9.92
UTX -0.08 0.18 -1.890 8.385 -26.36
VZ -0.08 0.11 -1.599 6.594 -42.97
WMT -0.51 0.63 -1.721 5.080 -50.95
XOM 1.15 1.10 2.706 11.110 65.71

For each firm we present the annualized first four moments of the time-series of idiosyncratic variance risk
premium. The idiosyncratic variance risk premium is calculated as the difference between the excepted
integrated idiosyncratic variance under P and Q distributions. In the last column we report the t-stat for
the null hypothesis that the average idiosyncratic variance risk premium is zero.
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Table 15: Fama-French Regression of the Idiosyncratic Variance Risk Premiums

Ticker a t-stat bm t-stat bsmb t-stat bhml t-stat bmom t-stat R2 (%)

AA -0.016 -47.418 0.049 1.746 -0.059 -1.074 0.072 1.316 0.233 6.330 1.03
AXP 0.004 46.532 -0.007 -1.123 0.019 1.419 -0.024 -1.841 -0.053 -6.053 0.98
BA 0.003 97.938 -0.001 -0.472 0.008 1.677 -0.002 -0.477 -0.012 -3.557 0.39
CAT 0.002 48.857 -0.002 -0.728 0.011 1.684 -0.011 -1.791 -0.026 -6.105 1.03
CSCO 0.002 45.470 -0.004 -1.408 0.010 1.645 -0.017 -2.760 -0.026 -6.282 1.08
CVX 0.001 54.253 -0.004 -2.027 0.002 0.638 -0.012 -3.507 -0.014 -5.815 0.94
DD 0.004 81.669 -0.001 -0.280 0.003 0.411 -0.004 -0.499 -0.020 -3.968 0.44
DIS 0.003 68.209 -0.003 -0.766 0.013 1.687 -0.010 -1.345 -0.024 -4.642 0.61
GE -0.001 -28.374 0.003 0.945 0.003 0.445 -0.002 -0.363 0.019 4.923 0.75
HD 0.007 63.420 -0.017 -1.916 0.006 0.374 -0.015 -0.854 -0.044 -3.822 0.39
HPQ 0.013 65.314 -0.001 -0.048 0.019 0.614 0.043 1.369 -0.005 -0.223 0.06
IBM 0.003 69.428 0.000 -0.007 0.000 -0.044 0.007 1.114 -0.002 -0.542 0.06
INTC 0.014 68.953 -0.022 -1.345 0.034 1.042 0.020 0.616 -0.037 -1.711 0.15
JNJ -0.004 -55.748 -0.003 -0.643 0.019 1.746 -0.012 -1.114 -0.005 -0.761 0.12
JPM 0.015 41.687 -0.050 -1.756 0.040 0.708 -0.126 -2.240 -0.231 -6.096 0.95
KO -0.001 -30.142 -0.003 -0.732 0.014 1.817 -0.016 -2.200 -0.010 -1.958 0.26
MCD -0.006 -77.139 0.003 0.489 0.003 0.245 -0.001 -0.045 0.006 0.716 0.02
MMM 0.001 92.270 0.000 0.308 0.004 1.675 0.002 0.854 -0.003 -1.855 0.21
MRK 0.004 85.590 -0.002 -0.555 0.000 -0.036 0.001 0.163 -0.019 -3.565 0.38
MSFT -0.001 -17.280 -0.003 -0.719 0.016 2.039 -0.016 -2.057 -0.017 -3.267 0.41
PFE 0.004 83.118 -0.003 -0.784 -0.004 -0.427 -0.012 -1.419 -0.018 -3.333 0.30
PG 0.002 68.832 0.000 -0.102 -0.003 -0.681 0.004 1.056 -0.003 -1.253 0.12
T 0.000 -9.744 -0.001 -0.646 0.003 1.359 -0.007 -2.869 -0.007 -4.124 0.57
UTX -0.001 -26.210 -0.001 -0.360 0.005 1.071 -0.013 -2.830 -0.010 -3.174 0.41
VZ -0.001 -42.881 0.001 0.661 0.004 1.571 -0.005 -1.809 -0.003 -1.842 0.26
WMT -0.005 -50.812 0.000 -0.031 0.010 0.652 -0.033 -2.092 -0.015 -1.440 0.16
XOM 0.012 65.989 -0.031 -2.214 -0.037 -1.344 -0.075 -2.692 -0.075 -4.014 0.53

For every firm we run a time-series regression of the idiosyncratic variance risk premium on the market
excess return (rmt − rt), Fama-French factors (rSMB and rHML) as well as the momentum factor (rmom),
according to the following equations:

IV RPi,t = ai + bmi · (rmt − rt) + bsmb
i · rSMB

t + bhml
i · rHML

t + bmom
i · rmom

t + εi,t

We report the regression coefficients, t-stats, and the R2 of the regression.
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Table 16: Explanatory Power of MVRP for IV RP

Ticker a t-stat bm t-stat R2 (%)

AA -0.004 -15.305 2.448 68.301 54.35
AXP 0.001 15.893 -0.543 -58.968 47.01
BA 0.002 69.258 -0.146 -35.452 24.28
CAT 0.001 18.929 -0.252 -56.188 44.62
CSCO 0.000 10.205 -0.305 -87.259 66.02
CVX 0.000 22.477 -0.193 -134.361 82.16
DD 0.003 54.028 -0.238 -38.009 26.93
DIS 0.002 40.447 -0.274 -45.610 34.68
GE 0.000 -9.268 0.128 25.516 14.25
HD 0.004 34.883 -0.698 -56.188 44.62
HPQ 0.011 47.068 -0.313 -10.537 2.76
IBM 0.002 49.928 -0.067 -11.636 3.34
INTC 0.010 44.277 -0.769 -27.142 15.82
JNJ -0.004 -45.858 -0.016 -1.599 0.07
JPM 0.002 6.571 -2.665 -78.404 61.07
KO -0.002 -30.189 -0.067 -9.406 2.21
MCD -0.005 -54.568 0.190 15.964 6.11
MMM 0.001 65.639 -0.043 -21.647 10.68
MRK 0.003 57.821 -0.237 -36.155 25.01
MSFT -0.002 -25.803 -0.138 -18.814 8.28
PFE 0.003 55.357 -0.268 -40.224 29.22
PG 0.001 45.949 -0.074 -20.875 10.01
T -0.001 -29.710 -0.075 -34.628 23.43
UTX -0.001 -30.682 -0.064 -14.963 5.40
VZ -0.001 -37.475 -0.013 -4.771 0.58
WMT -0.005 -39.185 0.047 3.046 0.24
XOM 0.005 37.687 -1.273 -73.038 57.65

For each firm we run a time-series regression of the idiosyncratic variance risk premium on the market
variance risk premium, according to the following equation:

IV RPi,t = ai + bi ·MVRPt + εi,t

We report the regression coefficients and the associated t-stats, along with the regression R2.
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Table 17: Explanatory Power of AV RP and Forth for IV RP

Ticker a t-stat bAIV RP t-stat borth t-stat R2 (%)

AA 0.001 3.049 -8.238 -74.027 1.439 29.341 61.81
AXP -0.001 -15.524 2.291 102.929 -0.093 -9.436 73.17
BA 0.001 56.727 0.861 113.724 0.095 28.534 77.82
CAT 0.000 -6.436 1.017 83.419 -0.065 -12.107 64.46
CSCO 0.000 -14.455 1.038 103.983 -0.173 -39.429 75.94
CVX 0.000 -7.213 0.608 155.640 -0.133 -77.314 88.52
DD 0.001 31.299 1.288 95.511 0.099 16.657 70.58
DIS 0.000 9.501 1.461 165.524 0.103 26.512 87.76
GE 0.000 11.882 -0.709 -49.298 -0.060 -9.533 39.15
HD 0.000 5.534 3.082 110.011 -0.051 -4.156 75.57
HPQ 0.005 24.568 3.737 51.893 1.132 35.678 50.30
IBM 0.001 28.054 0.720 49.302 0.202 31.427 46.59
INTC 0.003 19.145 5.062 83.300 0.760 28.400 66.41
JNJ -0.003 -28.704 -0.540 -17.055 -0.301 -21.581 16.19
JPM -0.006 -27.189 10.080 121.447 -1.021 -27.909 79.85
KO -0.001 -17.532 -0.130 -5.606 -0.213 -20.959 10.73
MCD -0.003 -34.296 -1.338 -38.270 -0.229 -14.899 30.09
MMM 0.001 45.379 0.298 60.871 0.051 23.510 52.08
MRK 0.002 35.471 1.232 75.821 0.074 10.380 59.92
MSFT -0.001 -17.039 0.150 6.130 -0.235 -21.843 11.61
PFE 0.001 32.376 1.338 82.768 0.056 7.918 63.83
PG 0.001 22.912 0.524 59.050 0.092 23.479 50.76
T 0.000 -22.412 0.145 19.914 -0.097 -30.186 25.03
UTX -0.001 -17.900 -0.025 -1.853 -0.155 -25.583 14.38
VZ -0.001 -22.442 -0.101 -11.740 -0.079 -20.669 12.60
WMT -0.003 -22.409 -0.990 -20.644 -0.380 -17.997 16.07
XOM 0.003 18.054 4.141 75.481 -0.818 -33.851 63.59

We first regress the market variance risk premium on the average variance risk premiums of all firms to get
the component,F orth

RP , of the market variance risk premium that is orthogonal to the average variance risk
premium. Then we regress the idiosyncratic variance risk premium of each firm on the average variance risk
premium,AV RP , and the component of the market variance risk premium orthogonal to it.

IV RPi,t = ai + bAIV RP,i ·AIV RPt + borth,i · F orth
RP + εi,t

We report the regression coefficients and the associated t-stats, along with the regression R2.
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Table 18: Estimated Unconditional Betas

Ticker Joint OLS P Q

AA 1.09 1.30 1.41 0.99
AXP 1.23 1.45 1.08 0.99
BA 1.06 0.93 1.11 0.98
CAT 1.11 1.08 1.28 0.99
CSCO 1.08 1.41 1.15 0.97
CVX 0.81 0.81 0.94 0.91
DD 0.96 0.99 1.20 1.00
DIS 1.07 1.05 1.05 1.00
GE 0.86 1.19 1.03 1.00
HD 1.06 1.09 1.17 0.99
HPQ 1.14 1.13 1.01 0.95
IBM 0.97 0.91 0.73 0.91
INTC 0.99 1.32 1.24 0.98
JNJ 0.60 0.57 0.48 0.67
JPM 0.85 1.55 1.12 1.01
KO 0.75 0.58 0.66 0.75
MCD 0.55 0.60 0.71 0.74
MMM 0.98 0.77 0.85 0.90
MRK 0.89 0.77 0.74 0.91
MSFT 1.04 1.09 0.90 1.00
PFE 0.78 0.81 0.93 0.95
PG 0.75 0.57 0.57 0.70
T 0.81 0.79 0.77 0.83
UTX 1.03 0.95 1.04 0.96
VZ 0.70 0.74 0.74 0.81
WMT 0.70 0.75 0.73 0.70
XOM 0.75 0.80 0.94 0.92

Average 0.91 0.96 0.95 0.91
Min 0.55 0.57 0.48 0.67
Max 1.23 1.55 1.41 1.01

The first column reports the beta estimates based on the joint likelihood function. The second column
presents the OLS beta estimate over the whole sample. The betas in the third column are estimated by
fitting the equity return dynamics (2.2) to equity returns under the P measure, while the betas in the last
column are estimated by fitting the model option price to the observed option prices under the Q measure.
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Table 19: Conditional Beta Estimates

Conditional beta

Ticker mean std min max unconditional beta

AA 1.26 0.34 0.47 2.94 1.09
AXP 1.44 0.37 0.44 3.86 1.23
BA 1.26 0.35 0.24 2.07 1.06
CAT 1.33 0.36 0.22 2.50 1.11
CSCO 1.62 0.52 0.00 3.14 1.08
CVX 0.95 0.27 0.25 1.60 0.81
DD 1.12 0.33 0.22 2.09 0.96
DIS 1.25 0.37 0.20 2.12 1.07
GE 1.07 0.38 0.00 2.34 0.86
HD 1.25 0.32 0.15 2.40 1.06
HPQ 1.42 0.39 0.01 2.78 1.14
IBM 1.29 0.32 0.01 2.22 0.97
INTC 1.36 0.47 0.10 2.72 0.99
JNJ 0.90 0.29 0.23 1.81 0.60
JPM 0.51 0.39 0.00 2.64 0.85
KO 1.01 0.34 0.08 1.99 0.75
MCD 0.49 0.22 0.00 1.70 0.55
MMM 1.10 0.29 0.04 1.83 0.98
MRK 1.08 0.42 0.09 1.96 0.89
MSFT 1.20 0.62 0.00 3.20 1.04
PFE 0.99 0.40 0.17 2.20 0.78
PG 0.98 0.31 0.05 2.00 0.75
T 0.81 0.40 0.00 2.36 0.81
UTX 1.22 0.24 0.12 1.95 1.03
VZ 0.65 0.31 0.00 2.02 0.70
WMT 1.07 0.37 0.09 2.41 0.70
XOM 0.95 0.22 0.02 1.49 0.75

We estimate conditional betas on a daily frequency for every firm. These estimates are based on the estimated
market and equity models structural parameters, and the estimated spot market variance, conditional on the
option prices observed on each day. We present the mean, standard deviation, minimum, and maximum of
the time-series of the conditional betas. In the last column we also report our estimate of the unconditional
beta baed on the joint likelihood estimation for comparison.
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Figure 1: Time-Series Coefficients of the AIV Factor
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For each of the 25 Fama-French portfolios we run the time series regression (4.4) of the portfolio’s excess
return onto the Fama-French factors and the average idiosyncratic volatility factor (AIV ). The solid line
plots the coefficient estimates, bAIV , and the dashed lines represent the 95% confidence intervals.
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