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Abstract

We study the impact of model disagreement on the dynamics of asset prices and
return volatility. In our framework, two investors have homogeneous preferences and
equal access to information, but disagree about the length of the business cycle. Model
disagreement induces agents to have different economic outlooks and generates trading
activity and time-varying volatility. We show that model disagreement is the primary
cause of persistent fluctuations in stock market volatility and that it induces a GARCH-
like behavior of stock returns. Further, we show that volatility increases significantly
with disagreement in bad economic times, whereas this relationship is weaker during
good times. We test these theoretical predictions empirically and find statistically
significant evidence for them.
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1 Introduction

The field of finance is currently grappling with the fact that there are limits to applying the

standard Bayesian paradigm to asset pricing. Specifically, in a standard Bayesian framework,

beliefs are updated with a particular model in mind. However, as noted by Hansen and

Sargent (2007), many economic models cannot be trusted completely, thereby introducing

the notion of model uncertainty. Theoretically, though, as long as the potential set of

models that all agents in an economy consider is the same ex ante, the Bayesian framework

can still apply because agents can update their beliefs about which model explains the

economy. However, if the agents consider different sets of models or they adhere to different

paradigms, then disagreement will persist regarding which model is best to describe the

world or predict the future (Acemoglu, Chernozhukov, and Yildiz, 2009). It is this notion

of model disagreement that we focus on in this paper and characterize its effects on asset

prices, return volatility, and trade in the market.

Empirically, model disagreement appears to be important. For example, in a recent pa-

per by Carlin, Longstaff, and Matoba (2014), the authors study the effects of disagreement

about prepayment speed forecasts in the mortgage-backed securities market on risk premia,

volatility, and trading volume. Indeed, the prepayment models that traders use are often

proprietary and differ from each other, while the inputs to these models are publicly observ-

able (e.g., unemployment, interest rates, inflation). In that paper, the authors show that

disagreement is associated with a positive risk premium and is the primary channel through

which return volatility impacts trading volume.

In this paper, we analyze a continuous-time framework in which investors exhibit model

disagreement and study how this affects the dynamics of asset prices. In our setup, two

investors have homogenous preferences and equal access to information, but disagree about

the length of the business cycle. Each investor knows that the expected dividend growth rate

mean-reverts, but uses a different parameter that governs the rate at which this fundamental

returns to its long-term mean. The disagreement is commonly known, but each agent adheres

to his own model when deciding whether to trade.

Using disagreement about the length of the business cycle is natural and plausible. For

example, Massa and Simonov (2005) show that forecasters strongly disagree on recession

probabilities, which implies that they have different beliefs regarding the duration of re-

cessionary and expansionary phases. The origin of this disagreement may arise from many

sources. Indeed, there still remains much debate regarding the validity of long-run risk

models (e.g., Beeler and Campbell 2012; Bansal, Kiku, and Yaron 2012). Additionally, in

practice agents might use different time-series to estimate the mean-reversion parameter

(e.g., use consumption versus production data). Likewise, their estimation methods may
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differ (e.g., fitting the model to past analyst forecast data versus a moving-average of output

growth versus performing maximum-likelihood Kalman filter estimation). Finally, as Yu

(2012) documents, least-squares and maximum-likelihood estimators of the mean-reversion

speed of a continuous-time process are significantly biased. Some investors might be aware

of the existence of this bias and would adjust their estimation accordingly, whereas other

investors might ignore it.1

In our equilibrium model, two distinct quantities turn out to be important determinants of

asset prices and trade in the market. The first is the disagreement over fundamentals, which

is the instantaneous difference in beliefs about the expected growth rate in the economy. The

second is the difference in economic outlooks, which affects expectations of future economic

variables and takes into account how both agents will disagree over fundamentals in the

future. Both quantities generate trading volume and excess volatility, in line with existing

results (Harris and Raviv 1993, Dumas, Kurshev, and Uppal 2009). Our main contribution

is to document a clear link between the persistence of disagreement arising in our model and

the persistence of stock market volatility.2 To identify this link, we disentangle the impact

of disagreement from the impact generated by the other driving forces by decomposing stock

return volatility. We show that, indeed, disagreement is the main driving force of persistent

fluctuations in stock market volatility, whereas the level of the volatility is mainly driven by

long-run risk, as the long-run risk literature (Bansal and Yaron, 2004) suggests.3

Our results help to explain three well-known characteristics about financial market volatil-

ity. First, volatility systematically exceeds that justified by fundamentals (Shiller, 1981;

LeRoy and Porter, 1981). Indeed, we show that model disagreement amplifies volatility,

over and above the usual effect of uncertainty. Second, volatility is time-varying (Schwert,

1989; Mele, 2008). This arises naturally out of our model because disagreement is mean-

reverting. Last, but most important, volatility is persistent (Engle, 1982; Bollerslev, 1986;

Nelson, 1991), occurring in clusters. This persistence (or predictability) has been described

1This form of disagreement arises if agents are uncertain about the interpretation of public information,
even after observing infinitely many signals (Acemoglu, Chernozhukov, and Yildiz, 2009). We further justify
the assumption of different parameters in Appendix A.1 by performing a simulation exercise in which we
let the agents estimate the mean-reversion parameter with different methods. We show that the difference
between the estimated parameters is typically substantial, even though we perform 1,000 simulations of
economies of length of 50 years at quarterly frequency.

2Persistent disagreement is consistent with empirical findings by Patton and Timmermann (2010) and
Andrade, Crump, Eusepi, and Moench (2014).

3We define long-run risk here as the risk associated to a persistent expected dividend growth rate only.
In Bansal and Yaron (2004) long-run risk captures the risk associated to a persistent expected dividend
growth rate, a persistent dividend growth volatility, and a persistent expected dividend growth volatility.
In contrast, we do not assume that any fundamental variable features stochastic volatility. Instead, stock
return volatility becomes stochastic in equilibrium exactly because agents disagree about the magnitude of
long-run risk. We thus argue that long-run risk per se is not a cause of fluctuations in volatility, whereas
disagreement about long-run risk endogenously gives rise to such fluctuations.
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extensively in the empirical literature, but there is a paucity of theoretical explanations.4

We show that model disagreement generates a new channel of persistence transmission from

investors beliefs to stock market volatility and we fit a GARCH model on simulated stock re-

turns to show that volatility is indeed persistent. Our paper proposes therefore a theoretical

foundation for the GARCH-like behavior of stock returns.

To build on this, we empirically test two new predictions of our model. First, using the

volatility of the S&P 500 as a proxy for volatility and the dispersion of analyst forecasts of

the one-quarter-ahead U.S. GDP growth rate as a proxy for disagreement, we find a signif-

icant and positive correlation between the persistence of disagreement and the persistence

of volatility, confirming our main theoretical implication. Second, our model predicts that

the relationship between disagreement and volatility is stronger in bad economic times (i.e.,

when agents forecast low expected growth rates). Using the same data, we run predictive

regressions of future volatility on lagged disagreement and find that volatility increases sig-

nificantly with disagreement only during bad economic times, consistent with our theoretical

results.

Finally, we conclude the paper with a survival analysis. Indeed, in any model with

heterogeneous agents, whether all types survive in the long-run is a reasonable concern.

To address this, we perform simulations and show that all agents in our economy with

model disagreement survive for long periods of time, consistent with previous findings in

the literature (Yan, 2008). Based on this, we posit that model disagreement can have long-

lasting effects on asset prices without eliminating any players from the marketplace, which

likely makes our analysis economically important.

Our approach contrasts with previous work and thus adds to the previous finance lit-

erature. As already mentioned, Hansen and Sargent (2007) studies model misspecification

and model uncertainty, but does so for a single investor.5 In contrast, our study investigates

the consequence of disagreement about models in an economy with different investors. We

assume that investors disagree about the model governing the economy. Certainly, there are

many other forms of disagreement; in particular, several papers feature a setting in which

investors agree on the model governing the economy but disagree on the information that

they receive (see, e.g., Scheinkman and Xiong 2003, Dumas, Kurshev, and Uppal 2009, or

Xiong and Yan 2010). These models are able to generate excess volatility but they do not

identify the cause of persistent fluctuations in volatility. In contrast with the rest of theoret-

ical literature on disagreement, we propose—and find empirical support for—a foundation of

the GARCH-like dynamics in volatility. Furthermore, we also document, both theoretically

4Campbell and Cochrane (1999), Barberis, Huang, and Santos (2001), and McQueen and Vorkink (2004)
provide preference-based foundations for volatility clustering.

5See also Uppal and Wang (2003), Maenhout (2004), Liu, Pan, and Wang (2005), and Drechsler (2013).
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and empirically, an asymmetric relationship over the business cycle between disagreement

and volatility.6

The remainder of the paper is organized as follows. Section 2 describes the model and

its solution. Section 3 explores how model disagreement affects the dynamics of volatility.

Section 4 addresses the survival of investors. Section 5 concludes. All derivations and

computational details are in Appendix A.

2 Model Disagreement

Consider a pure exchange economy defined over a continuous time horizon [0,∞), in which a

single consumption good serves as the numéraire. The underlying uncertainty of the economy

is characterized by a 2-dimensional Brownian motion W = {(W δ
t ,W

f
t ) : t > 0}, defined on

the filtered probability space (Ω,F ,P). The aggregate endowment of consumption is assumed

to be positive and to follow the process:

dδt
δt

= ftdt+ σδdW
δ
t (1)

dft = λ(f − ft)dt+ σfdW
f
t , (2)

where W δ and W f are two independent Brownian motions under the physical (objective)

probability measure P. The expected consumption growth rate f , henceforth called the

fundamental, is unobservable and mean-reverts to its long-term mean f̄ at the speed λ. The

parameters σδ and σf are the volatilities of the consumption growth and of the fundamental.

There is a single risky asset (the stock), defined as the claim to the aggregate consumption

stream over time. The total number of outstanding shares is unity. In addition, there is also

a risk-free bond, available in zero-net supply.

The economy is populated by two agents, A and B. Each agent is initially endowed with

equal shares of the stock and zero bonds, can invest in these two assets, and derives utility

from consumption over his or her lifetime. Each agent chooses a consumption-trading policy

to maximize his or her expected lifetime utility:

Ui = Ei
[∫ ∞

0

e−ρt
c1−α
it

1− α
dt

]
, (3)

where ρ > 0 is the time discount rate, α > 0 is the relative risk aversion coefficient, and

6The literature on differences in beliefs is large. See, among many others, Varian (1985), Harris and Raviv
(1993), Detemple and Murthy (1994), Kandel and Pearson (1995), Zapatero (1998), Scheinkman and Xiong
(2003), Li (2007), Cao and Ou-Yang (2009), David (2008), Xiong and Yan (2010), Chen, Joslin, and Tran
(2010, 2012), Ehling, Gallmeyer, Heyerdahl-Larsen, and Illeditsch (2013), Buraschi and Whelan (2013), and
Buraschi, Trojani, and Vedolin (2014).
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cit denotes the consumption of agent i ∈ {A,B} at time t. The expectation in (3) depends

on agent i’s perception of future economic conditions. Agents value consumption streams

using the same preferences with identical risk aversion and time discount rate but, as we will

describe below, have heterogeneous beliefs.

2.1 Learning and Disagreement

The agents commonly observe the process δ, but have incomplete information and heteroge-

neous beliefs about the dynamics of the fundamental f . Specifically, the agents agree that

the fundamental mean-reverts but disagree on the value of the mean-reversion parameter λ.

As such, they have different perceptions about the length of the business cycle.7

Agent A’s perception of the aggregate endowment and the fundamental is

dδt
δt

= fAtdt+ σδdW
δ
At

dfAt = λA
(
f̄ − fAt

)
dt+ σfdW

f
At,

where W δ
A and W f

A are two independent Brownian motions under agent A’s probability

measure PA. On the other hand, agent B believes that

dδt
δt

= fBtdt+ σδdW
δ
Bt

dfBt = λB
(
f̄ − fBt

)
dt+ σfdW

f
Bt,

where W δ
B and W f

B are two independent Brownian motions under agent B’s probability

measure PB. Both agents agree on the long-term mean of the fundamental f̄ and on the

volatility of the fundamental σf .
8

Neither agent uses the right parameter λ. Instead, the true parameter λ is assumed to

lie somewhere in between the parameters perceived by the agents. As such, there are 3

probability measures: the objective probability measure P and the two probability measures

PA and PB as perceived by agents A and B.

The agents both observe the aggregate endowment process δ and use it to estimate

7Asset pricing implications of heterogenous models and parameters are provided in David (2008), Ehling,
Gallmeyer, Heyerdahl-Larsen, and Illeditsch (2013), Buraschi and Whelan (2013), and Buraschi, Trojani,
and Vedolin (2014) among others.

8We have considered extensions of the model where agents have heterogeneous parameters f̄ and σf , with
similar results. The parameter bearing the main implications is the mean-reversion speed λ and thus we
choose to focus on heterogeneity about it and to isolate our results from other sources of belief heterogeneity.
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the fundamental f under their respective probability measures.9 Since they use different

models, they have different estimates of f . Define f̂A and f̂B as each agent’s estimate of the

unobservable fundamental f :

f̂it ≡ Eit [fit] , for i ∈ {A,B},

which are computed using standard Bayesian updating techniques. Learning is implemented

via Kalman filtering and yields10

df̂it = λi

(
f̄ − f̂it

)
dt+

γi
σδ
dŴ δ

it, for i ∈ {A,B},

where γi denotes the posterior variance perceived by agent i and Ŵ δ
i represents the normal-

ized innovation process of the dividend under agent i’s probability measure

dŴ δ
it =

1

σδ

(
dδt
δt
− f̂itdt

)
. (4)

The process in Equation (4) has a simple interpretation. Agent i observes a realized growth

of dδt/δt and has an expected growth of f̂itdt. The difference between the realized and the

expected growth, normalized by the standard deviation σδ, represents the surprise or the

innovation perceived by agent i.

The posterior variance γi (i.e., Bayesian uncertainty) reflects incomplete knowledge of

the true expected growth rate. It is defined by11

γi ≡ Varit [fit] = σ2
δ

√λ2
i +

σ2
f

σ2
δ

− λi

 > 0, for i ∈ {A,B} . (5)

Equation (5) shows how γi depends on the initial parameters. The posterior variance in-

creases with the volatility of the fundamental σf and with the volatility of the aggregate

endowment σδ, and decreases with the mean-reversion parameter λi. Intuitively, if λi is

small then agent i believes the process f to be persistent and thus the perceived uncertainty

9We assume that the only public information available is the history of the aggregate endowment process
δ. The model can also accommodate public news informative about the fundamental, but here we chose
not to obscure the model’s implications and we abstract away from additional public news. The effects of
heterogeneous beliefs about public news are well-understood (see, e.g., Scheinkman and Xiong (2003) or
Dumas, Kurshev, and Uppal (2009) among others).

10See Theorem 12.7 in Liptser and Shiryaev (2001) and Appendix A.2 for computational details.
11As in Scheinkman and Xiong (2003) or Dumas, Kurshev, and Uppal (2009), we assume that the posterior

variance has already converged to a constant. The convergence arises because investors have Gaussian priors
and all variables are normally distributed. This generates a deterministic path for the posterior variance and
a quick convergence (at an exponential rate) to a steady-state value.
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in the estimation is large. Since agents A and B use different mean-reversion parameters, it

follows that their individual posterior variances are different, that is, one of the agents will

perceive a more precise estimate of the expected growth rate. Therefore, one of the agents

appears “overconfident” with respect to the other agent, although overconfidence here does

not arise from misinterpretation of public signals as in Scheinkman and Xiong (2003) or

Dumas, Kurshev, and Uppal (2009), but from different underlying models.

The innovation processes Ŵ δ
A and Ŵ δ

B are Brownian motions under PA and PB, respec-

tively. They are such that agent i has the following system in mind

dδt
δt

= f̂itdt+ σδdŴ
δ
it (6)

df̂it = λi(f̄ − f̂it)dt+
γi
σδ
dŴ δ

it, i ∈ {A,B}. (7)

A few points are worth mentioning. First, although the economy is governed by two Brownian

motions under the objective probability measure P (as shown in (1)-(2)), there is only one

Brownian motion under each agent’s probability measure Pi. This arises because there is

only one observable state variable, the aggregate endowment δ. Second, the instantaneous

variance of the observable process δ is the same for both agents, which is not the case for

the instantaneous variance of the filter f̂i. Because of the “overconfidence” effect induced by

different parameters λ, one of the agents will perceive a more volatile filter than the other.

Furthermore, agreeing to disagree implies that each agent knows how the other agent

perceives the economy and that they are aware that their different perceptions will generate

disagreement—although they observe the same process δ. This important feature (that the

aggregate endowment process is observable and thus it should be the same for both agents)

provides the link between the two probability measures PA and PB. Writing the aggregate

consumption process (6) for both agents and restricting the dynamics to be equal provides a

relationship between the innovation processes Ŵ δ
A and Ŵ δ

B (technically, a change of measure

from PA to PB):

dŴ δ
At = dŴ δ

Bt +
1

σδ

(
f̂Bt − f̂At

)
dt. (8)

Equation (8) shows how one can convert agent A’s perception of the innovation process

Ŵ δ
A to agent B’s perception Ŵ δ

B. The change of measure consists of adding the drift term

on the right hand side of (8). For example, suppose that agent A has an estimate of the

expected growth rate of f̂At = 1%, whereas agent B’s estimate is f̂Bt = 3%. Assume that

the realized growth rate (observed by both agents) turns out to be dδt/δt = 2%. It follows

that agent B was optimistic and dŴ δ
Bt = −0.01/σδ, whereas agent A was pessimistic and

dŴ δ
At = 0.01/σδ.
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The extra drift term in Equation (8) comprises the difference between each agent’s esti-

mates of the growth rate (f̂Bt − f̂At) or the disagreement, which we denote hereafter by ĝt.

We can now use this relationship to compute the dynamics of ĝt, under one of the agent’s

probability measure, say PB.

Proposition 1. (Evolution of Disagreement) Under the probability measure PB, the dynam-

ics of disagreement are given by

dĝt = df̂Bt − df̂At =

[
(λA − λB)(f̂Bt − f̄)−

(
γA
σ2
δ

+ λA

)
ĝt

]
dt+

γB − γA
σδ

dŴ δ
Bt. (9)

Proof. See Appendix A.3

Proposition 1 characterizes the dynamics of disagreement12, which yields several proper-

ties that make it different from previous models of overconfidence that have been studied in

the literature. First, if one of the agents believes in long-run risk, disagreement is persistent.

Second, if agents have different degrees of precision in their estimates (which happens to be

the case when they use different parameters λ), disagreement is stochastic. Third, because

its long-term drift is stochastic, disagreement will never converge to a constant but will

always be regenerated—even without a stochastic term.

To see this, observe that Equation (9) shows that disagreement is mean-reverting around

a stochastic mean, driven by f̂B. This arises because λA 6= λB. If agents adhered to the same

models, disagreement would revert to zero, as in Scheinkman and Xiong (2003) and Dumas,

Kurshev, and Uppal (2009). In contrast, in our setup, the mean is driven by f̂B because

the agents use different models. In addition, if one of the agents, say agent B, believes in

long-run risk, disagreement becomes persistent because it mean reverts to a persistent f̂B.13

To appreciate the relationship between the agents’ precision and the stochastic nature of

disagreement, let us focus on the stochastic term in the dynamics of disagreement expressed

in Equation (9). This term arises because γA 6= γB. As previously observed in Equation (5),

different posterior variances are a result of different mean-reversion parameters. This gen-

erates stochastic shocks in disagreement. Although models of overconfidence (Scheinkman

and Xiong, 2003; Dumas, Kurshev, and Uppal, 2009) generate a similar stochastic term, a

key difference arises in our setup. To see this, suppose we shut down this stochastic term.

12The dynamics of disagreement in (9) comprise only ŴB but not ŴA. Without loss of generality, we
choose to work under agent B’s probability measure PB ; however, by using (8), we could easily switch to
agent A’s probability measure and all the results would still hold.

13Alternatively, if agent A believes the fundamental is persistent, then we can write the dynamics of
disagreement under PA and the same intuition holds.
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This can be done by properly adjusting the initial learning problem of the agents.14 Equa-

tion (9) shows that, even though the stochastic term disappears, disagreement will still be

time-varying—and persistent—precisely due to the first term in its drift. In contrast, shut-

ting down the stochastic term in models of overconfidence eliminates disagreement through

prompt convergence toward its long-term mean, zero. This highlights the “structural” form

of disagreement generated by different economic models.

2.2 Economic Outlook

Now, let us consider how model disagreement affects each agent’s relative economic outlook.

Since each agent perceives the economy under a different probability measure, any random

economic variable X, measurable and adapted to the observation filtration O, now has two

expectations: one under the probability measure PA, and the other under the probability

measure PB. Naturally, they are related to each other by the formula

EA [X] = EB [ηX] ,

where η measures the relative difference in outlook from one agent to the other.

Proposition 2. (Economic Outlook) Under the probability measure PB, the relative differ-

ence in economic outlook satisfies

ηt ≡
dPA

dPB

∣∣∣∣
Ot

= e
− 1

2

∫ t
0

(
1
σδ
ĝs
)2
ds−

∫ t
0

1
σδ
ĝsdŴ δ

Bs ,

where Ot is the observation filtration at time t and η obeys the dynamics

dηt
ηt

= − 1

σδ
ĝtdŴ

δ
Bt. (10)

Proof. See Girsanov’s Theorem.

On the surface, the expression in (2) is simply the Radon-Nikodym derivative for the

change of measure between the agents’ beliefs. But this has a natural economic interpretation

here as the difference in economic outlook between the agents, since it captures the difference

in expectations that each agent has for the future. This contrasts with previous papers that

use ηt to express differences in the sentiment between agents (Dumas, Kurshev, and Uppal,

2009). In our setting, agents do not have behavioral biases like overconfidence or optimism.

14Precisely, we can consider that agents have different parameters σf chosen in such a way that γA = γB .
This will shut down the stochastic term in Equation (9).
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Figure 1: Different economic outlooks

Expectation of future aggregate consumption computed by agent A (solid blue line) and
agent B (dashed red line). The state variables at time t = 0 are δ0 = 1, f̂B0 = −1%, ĝ0 = 0,
and η0 = 1. Other parameters for this example are listed in Table 1.

Rather, because they adhere to different models of the world, they rationally have different

economic outlooks, which are not a function of how they are feeling per se (i.e., sentiment).

One important implication of Proposition 2 is that disagreement over fundamentals and

economic outlook are different entities. In fact, relative outlook is a function of disagreement,

and there may be differences in the agents’ outlook even though they agree today on the

underlying fundamentals of the economy. This is because disagreement in our setup expresses

the difference in beliefs about the expected growth rate today, while outlook enters into the

expectations of future economic variables and thus captures the way in which agents’ beliefs

will differ into the future.

This is best appreciated by observing that the relative difference in outlook in (2) is a

function of the integral of disagreement that is realized over a particular horizon, not just

the disagreement that takes place at one particular instant. This implies that two agents

may have very different outlooks, even though they currently agree on the fundamentals

in the market. That is, even though their models currently yield the same fundamentals,

because they use different models, they will have different outlooks for the future. Trading

volume may therefore be substantial even when there is currently no disagreement about

fundamentals: trade will still take place because the agents take into account that they will

disagree in the future (i.e., they have different economic outlooks).

To see this more clearly, consider the following example. Suppose that, at t=0, f̂A0 =

f̂B0 = −1%. Because ĝ0 = 0, both agents agree that the economy is going through a

recession. Furthermore, assume that agent B believes the economic cycles are longer than

11



agent A, that is, λB = 0.1 whereas λA = 0.3. Figure 1 shows the different economic outlooks

that agents hold, even though they are in agreement today. It calculates the expectation of

future dividends, Ei0 [δu]. Agent A (solid blue line) believes that the economy will recover

quickly, in about two years, whereas agent B (dashed red line) believes that it will take six

years for the economy to get back to its initial level of aggregate consumption.

It is also instructive to observe in (10) that disagreement affects the evolution of relative

outlook. It is the primary driver of fluctuations in ηt. When ĝt is large, ηt will also have large

fluctuations. Note, however, that even though dηt is zero when ĝt = 0, ηt itself can take any

positive value and thus it still bears implications for the pricing of assets in the economy.

2.3 Equilibrium Pricing

To compute the equilibrium, we first write the optimization problem of each agent under

agent B’s probability measure PB. Since we have decided to work (without loss of gener-

ality) under PB, let us write from now on and for notational ease the following conditional

expectations operator

Et [·] ≡ EB [· | Ot] .

The market is complete in equilibrium since under the observation filtration of both

agents there is a single source of risk. Consequently, we can solve the problem using the

martingale approach of Karatzas, Lehoczky, and Shreve (1987) and Cox and Huang (1989).15

Proposition 3. (Equilibrium) Assume that the coefficient of relative risk aversion α is an

integer.16 The equilibrium price of the risky asset at time t is

St =

∫ ∞
t

Sut du,

where Sut is

Sut = Et
[
ξBu
ξBt
δu

]
= e−ρ(u−t)δαt

α∑
j=0

(
α

j

)
ω(ηt)

j [1− ω(ηt)]
α−j Et

[(
ηu
ηt

) j
α

δ1−α
u

]
, (11)

15The martingale approach transforms the dynamic consumption and portfolio choice problem into a
consumption choice problem subject to a static, lifetime budget constraint.

16This assumption greatly simplifies the calculus. To the best of our knowledge, it has been first pointed
out in Yan (2008) and Dumas, Kurshev, and Uppal (2009). If the coefficient of relative risk aversion is real,
the computations can still be performed using Newton’s generalized binomial theorem.
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where ξB denotes the state-price density perceived by agent B

ξBt = e−ρtδ−αt

[(
ηt
κA

)1/α

+

(
1

κB

)1/α
]α
, (12)

and ω(η) denotes agent A’s share of consumption

ω (ηt) =

(
ηt
κA

)1/α

(
ηt
κA

)1/α

+
(

1
κB

)1/α
. (13)

The risk free rate r and the market price of risk θ are

rt = ρ+ αf̂Bt − αω(ηt)ĝt +
1

2

[
α− 1

ασ2
δ

ω(ηt)(1− ω(ηt))ĝ
2
t − α(α + 1)σ2

δ

]
θt = ασδ + ω(ηt)

ĝt
σδ
.

Proof. The proof follows Dumas, Kurshev, and Uppal (2009) and is provided in Appendix

A.4. The moment-generating function in Equation (11) is solved in Appendix A.5.

Equation (12) shows how the state-price density ξB depends on the outlook variable η.

Since disagreement ĝ directly drives the volatility of the state-price density (as shown in

Equation 10), it follows from (12) that persistence in disagreement generates persistence in

the volatility of the state-price density. Therefore, even though in our model agents disagree

about a drift component, it directly impacts the diffusion of the state price density and

consequently all the equilibrium quantities.

The optimal share of consumption, stated in Equation (13), is exclusively driven by the

outlook variable η. If η tends to infinity, which means that agent A’s perception of the

economy is more likely than agent B’s perception17, then agent A’s share of consumption

tends to one. Conversely, if η tends to zero, then ω(η) converges to zero. Unsurprisingly,

agent A’s consumption share increases with the likelihood of agent A’s probability measure

being true.

The single-dividend paying stock, expressed in Equation (11), consists in a weighted sum

of expectations, with weights characterized by the consumption share ω(·), which itself is

driven by the economic outlook η. It is instructive to study first the case α = 1 (log-utility

17This can be seen from Equation (10): high η can arise either if (i) agent B is optimistic (ĝ > 0) and ŴB

shocks are negative or if (ii) agent B is pessimistic (ĝ < 0) and ŴB shocks are positive.
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case), when the price of the single-dividend paying stock becomes

Sut = ω(ηt)S
u
At + [1− ω(ηt)]S

u
Bt,

where Suit is the price of the asset in a hypothetical economy populated by only group i

agents. A similar aggregation result is provided by Xiong and Yan (2010). In contrast, when

the coefficient of relative risk aversion is greater than one, the aggregation must be adapted

to accomodate the additional intermediary terms (for j = 1, ..., α − 1) in the summation

(11). In fact, the summation has now α+1 terms and the price of the single dividend paying

stock becomes

Sut =
α∑
j=0

(
α

j

)
ω(ηt)

j [1− ω(ηt)]
α−j Sujt, (14)

where Sujt is the price of the asset in a hypothetical economy populated by agents with relative

economic outlook ηj/α (j = 0 corresponds to agent B and j = α corresponds to agent A).

Since the binomial coefficients in (14) sum up to one, the price is therefore a weighted average

of α + 1 prices arising in representative agent economies populated by agents with relative

economic outlook ηj/α. Hence, the outlook variable η not only affects the price valuation

through the expectations in (11), but also through the weights in the summation (14).

The weighted average form (14) highlights the origin of fluctuations in stock price volatil-

ity and the key role played by disagreement and the relative outlook η. The intuition is as

follows. The relative outlook η fluctuates in the presence of disagreement and causes in-

vestors to speculate against each other. This speculative activity generates fluctuations in

consumption shares: if the hypothetical investor j’s model is confirmed by the data, he or she

will consume more and thus his or her weight in the pricing formula (14) increases. The price

Sut will therefore approach Sujt not only through the expectation but also through changes

in the relative weights. These fluctuations in relative weights further amplify the impact of

disagreement on the stock price and thus generates excess volatility (Dumas, Kurshev, and

Uppal, 2009).

3 Disagreement and Volatility

We turn now to the implications of model disagreement and different economic outlooks for

the level, fluctuations, and persistence of volatility.
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Proposition 4. (Stock Return Volatility) The time t stock return volatility satisfies

|σt| =

∣∣∣∣∣σ(Xt)
> ∂St
∂Xt

St

∣∣∣∣∣ =

∣∣∣∣∣σ(Xt)
> ∫∞

t

∂Sut
∂Xt

du∫∞
t
Sut du

∣∣∣∣∣ ,
where σ(xt) denotes the diffusion of the state vector x = (ζ, f̂B, ĝ, µ) and we define ζ ≡ ln δ

and µ ≡ ln η. The stock return diffusion, σt, can be written

σt = σδ +
Sf
S

γB
σδ︸ ︷︷ ︸

≡σf,lr

+
Sg
S

(
γB − γA
σδ

)
︸ ︷︷ ︸

≡σg,lr

+
−Sµ
Sσδ

ĝt︸ ︷︷ ︸
≡σg,i

, (15)

where Sf , Sg, and Sµ represent partial derivatives of stock price with respect to f̂B, ĝ.

Proof. The diffusion of the state vector (ζ, f̂B, ĝ, µ) is obtained from Equations (6), (7),

(9), and (10). Multiply these with Sζ/S = 1, Sf/S, Sg/S, and Sµ/S to obtain (15).

Equation (15) shows that the stock return diffusion σ consists in the standard Lucas

(1978) volatility σδ and three terms representing the long-run impact of changes in the esti-

mated fundamental f̂B (denoted by σf,lr), the long-run impact of changes in the disagreement

ĝ (denoted by σg,lr), and the instantaneous impact of changes in the disagreement ĝ (denoted

by σg,i). Since we assume the volatility of the dividend σδ to be constant, the volatility of

the price-dividend ratio is exclusively driven by these last 3 terms. Therefore, all the fol-

lowing interpretations apply to both the stock return volatility and the volatility of the

price-dividend ratio.

3.1 Dynamics of Volatility

The general consensus in the theoretical literature is that disagreement amplifies trading

volume and produces excess volatility (see Harris and Raviv (1993), Banerjee and Kremer

(2010), and Dumas, Kurshev, and Uppal (2009) among many others). Our model is no

exception; in separate calculations, we show that the disagreement about the curent grouth

rate and also the different economic outlooks that agents hold regarding the future both

amplify volatility and trading volume. In this section, we turn our focus on more specific

implications of our model regarding the dynamics of volatility.

We start by performing a decomposition of the volatility which helps us understand what

drives its level and what drives its fluctuations. Then, we highlight two specific implications

for which we find strong empirical support. First, we show both theoretically and empirically

that the persistence of disagreement is indeed the main driver of the persistence of volatility.
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Second, we show that volatility is strongly driven by disagreement especially in bad economic

times (i.e., when the expected growth rate is low), whereas in good economic times the

relation is weaker. This implication, too, finds support in the data.

The calibration that we use for our theoretical results is provided in Table 1. Parameters

are adapted from Brennan and Xia (2001) and Dumas, Kurshev, and Uppal (2009), with

a few differences. We choose lower values for the volatility of the fundamental and the

dividend growth volatility. For the preference parameters, we choose a smaller coefficient

of relative risk aversion and a positive subjective discount rate. The mean-reversion speed

Parameter Symbol Value
Relative Risk Aversion α 3
Subjective Discount Rate ρ 0.015
Agent A’s Initial Share of Consumption ω0 0.5
Consumption Growth Volatility σδ 0.03
Mean-Reversion Speed of the Fundamental λA 0.3

λB 0.1
Long-Term Mean of the Fundamental f̄ 0.025
Volatility of the Fundamental σf 0.015

Table 1: Calibration

chosen by agent B is 0.1, corresponding to a business cycle half-life of approximately seven

years. Agent B consequently believes in long-run risk. On the other hand, agent A, who

choses λA = 0.3, believes that the length of the business cycle is shorter with a perceived

half-life of approximately two years. We assume that the true λ lies somewhere in between

λB and λA, and thus neither agent has a superior learning model.

3.1.1 Level and variation of volatility

As can be seen from Proposition 4, a direct analysis of the stock diffusion formula (15)

is obscured by the presence of the partial derivatives Sf , Sg, and Sµ. These derivatives

depend on the state variables themselves and thus are time-varying. In order to gain more

intuition and to understand which terms drive the level of volatility and which ones drive

its fluctuations, we simulate the last three terms in Equation (15). Simulations are done at

weekly frequency for 100 years. Figure 2 illustrates one simulated path of the stock return

diffusion and its components. The significant driver of changes in stock market volatility

is the fourth term in Equation (15), σg,i, whereas terms representing long-run changes in

disagreement, σg,lr, and long-run changes in the estimated fundamental, σf,lr, are slightly

time-varying but have less significant impact on the dynamics of volatility.

The fourth term in Equation (15) is therefore key to understanding the impact of dis-

agreement on stock return volatility. This term consists in the partial derivative of the stock
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Figure 2: Stock return diffusion and its components

One simulated path (100 years) of the stock return diffusion and its components. Simulations
are performed at weekly frequency, but lines are plotted at quarterly frequency to avoid
graph cluttering. The diffusion components σf,lr, σg,lr, and σg,i are defined in Equation
(15). The calibration is provided in Table 1.

price with respect to the relative outlook variable η, multiplied by the volatility of η (which

itself is directly driven by disagreement—according to 10). Both disagreement and economic

outlooks therefore play a role in driving volatility, by the following mechanism. When agents

are in disagreement, they hold different economic outlooks and thus the stock price fluctuates

in order to accommodate speculative trading by both agents. Higher disagreement generates

large fluctuations in economic outlook (according to 10) and thus large changes in the stock

price.

To disentangle the role played by disagreement from the role played by the relative

economic outlook, we plot in the left panel of Figure 3 the fourth diffusion component σg,i

and the disagreement ĝ. The correlation coefficient between the two lines in this particular

example yields a value of 0.95. In the right panel of Figure 3 we plot the distribution of

the correlation between the diffusion term and disagreement for 1,000 simulations and we

find that the coefficient stays mainly between 0.8 and 1. It is therefore disagreement which

drives the fluctuations in σg,i, whereas the relative economic outlook is the primary channel

through which these fluctuations are transmitted to stock market volatility.

We examine whether the dynamics illustrated on Figure 2 are particular to one simulation.
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Figure 3: Volatility component σg,i and disagreement ĝ

The left panel depicts one 100 years simulation of the volatility component σg,i and the
associated disagreement ĝ. Simulations are performed at weekly frequency, but lines are
plotted at quarterly frequency to avoid graph cluttering. The volatility term σg,i is defined in
Equation (15). The calibration is provided in Table 1. The right panel shows the distribution
of the correlation between σg,i and ĝ. This correlation is computed over an horizon of 100
years (simulated at weekly frequency), for 1,000 simulations.

To this end, we plot in Figures 4 and 5 the distributions of the averages and variances of

σf,lr, σg,lr, and σg,i. Averages and variances are computed over the length of each simulation

which is chosen to be 100 years at weekly frequency.

Figure 4 shows that the diffusion components σg,lr and σg,i do not have a significant

impact on the level of volatility. The level of volatility is primarily determined by the f̂B-

term defined by σf,lr. It is worth mentioning that the f̂B-term is negative because in our

model the precautionary savings effect dominates the substitution effect. Indeed, a positive

shock in the fundamental increases future consumption. Because agents want to smooth

consumption over time, they increase their current consumption and so reduce their current

investment. This tendency to disinvest outweighs the substitution effect (according to which

agents would invest more) and implies a drop in prices as long as agents are sufficiently risk

averse (α > 1). Hence the stock return diffusion component determined by changes in the

fundamental, σf,lr, is negative. The smaller the mean-reversion speed λB, the more negative

the σf,lr component, and consequently the larger stock return volatility becomes: a small

mean-reversion speed implies a significant amount of long-run risk and therefore the stock

price is very sensitive to movements in the fundamental, as in Bansal and Yaron (2004).

We try now to understand which components drive the variability of stock return diffu-

sion. This is shown in Figure 5, which depicts the variances of the diffusion components and

18



−0.15 −0.1 −0.05 0 0.05
0

0.1

0.2

0.3

Mean (σf,lr) Mean (σg,i) Mean (σg,lr)
F

re
q
u
en

cy

Figure 4: Distribution of the average of the diffusion components

The average over 1,000 simulations of each of the last three diffusion components in Equation
(15) is computed over a 100 years horizon, at weekly frequency. The calibration is provided
in Table 1.
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Figure 5: Distribution of the variance of the diffusion components

The variance over 1,000 simulations of each of the last three diffusion components in Equa-
tion (15) is computed over a 100 years horizon, at weekly frequency. The calibration is
provided in Table 1.

confirms the conclusions drawn from the example depicted in Figure 2. Variations incurred

by the stock return diffusion are almost exclusively generated by variations in the third and

fourth diffusion terms, σg,lr and σg,i, which are both driven by disagreement. Indeed, varia-

tions in σf,lr are relatively small. We can therefore conclude that the level of the volatility is

mainly driven by the persistence of the expected consumption growth, whereas fluctuations

in volatility are driven by differences of beliefs regarding the persistence of the expected

consumption growth.

3.1.2 Persistence of volatility

We turn now to the question whether the fluctuations in volatility generated by disagreement

are persistent. We show that indeed, in the model stock return volatility clusters because
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of the following mechanism. As shown in Proposition 1, disagreement ĝ mean-reverts to a

stochastic mean driven by f̂B. Because one of the agents (in this case agent B) believes the

fundamental is persistent, agent B’s estimation of the fundamental f̂B is persistent and so

becomes the disagreement. Given that the disagreement enters the diffusion of state-price

density through the outlook variable η (see Proposition 2) and then enters volatility through

the last component in Equation (15), stock return volatility clusters. This mechanism, new

to our knowledge, shows how persistence in the fundamental (a component of the drift) can

transmute into the diffusion of stock returns and generate volatility clustering.

To provide evidence that persistent disagreement indeed implies GARCH-type dynamics

in our theoretical model, we simulate 1,000 paths of stock returns over a 100 years horizon

at weekly frequency. For each simulated path we compute the demeaned returns, ε, by

extracting the residuals of the AR(1) regression

rt,t+1 = α0 + α1rt−1,t + εt+1,

where rt,t+1 stands for the stock return between time t and t + 1. The demeaned returns ε

is then fitted to a GARCH(1,1) process defined by

εt = σtzt, where zt ∼ N(0, 1)

σ2
t+1 = β0 + β1ε

2
t + β2σ

2
t .

Figure 6 illustrates the distribution of the ARCH parameter β1 and the GARCH param-

eter β2. Their associated t-statistics range between 6 and 11 for the ARCH parameter and

between 150 and 350 for the GARCH parameter. The values of β1, β2, and in particular their

sum, show therefore that stock return volatility clusters and is close to be integrated. That

is, the model implied volatility clusters because its main driver—the disagreement among

agents—is persistent.

The prediction that the persistence in disagreement drives the persistence in volatility

can be tested empirically. For this purpose, we use the dispersion of analyst forecasts of the

1-quarter-ahead real GDP growth rate and the annualized daily volatility of S&P 500 returns

over each quarter, between Q4:1968 and Q2:2014, as proxies for absolute disagreement and

volatility. Then, we perform 5-year rolling-window regressions of disagreement and volatility

on their respective lagged values and we use the associated autocorrelation coefficients to

measure the persistence in both series. Figure 7 plots these autocorrelation coefficients both

in a scatter plot (left panel) and in time-series (right panel). The overall message of both

panels is that the persistence in volatility and the persistence in dispersion feature similar

levels and dynamics. Moreover, the two time-series display an evident positive correlation.
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Figure 6: Model implied ARCH and GARCH parameters

Volatility the Distribution of the ARCH and GARCH parameters, resulted from 1,000 sim-
ulations over 100 years, at weekly frequency. The calibration is provided in Table 1.

Regression results in Table 2 confirm that the persistence in dispersion is significantly and

positively correlated with the persistence in volatility. Column 2 shows the fitted regression

line depicted in the left panel of Figure 7, that is, the regression of the persistence of volatility

on a constant and the persistence of disagreement. In columns 3 and 4 we perform the same

regression, but instead of using the autocorrelation coefficient as measure of persistence, we

use the AR(1) coefficients of the rolling-window regressions (column 3) or their t-statistics

(column 4). Overall, the results are in favor of our theoretical prediction, namely that the

persistence in disagreement drives the persistence in volatility.18

3.1.3 The asymmetric relationship between disagreement and volatility

In our model, the relation between disagreement and volatility depends on other state vari-

ables. Precisely, depending on whether agents believe the economy is going through good or

bad times, disagreement has a different impact on volatility. To see this, we plot in Figure

8 the stock return volatility as a function of the disagreement for different values of the

fundamental (as estimated by agent B, i.e., f̂B). Because agent B believes the fundamental

reverts slower to its mean than agent A (λB < λA), agent B tends to be optimistic when

the fundamental is large and pessimistic when the fundamental is low. Therefore, the dis-

agreement tends to be positive when the fundamental is large (in good economic times) and

18To check the robustness of these results, we have considered different lengths of the rolling window (from
1 to 20 years). We have also used the the three available measure of cross-sectional dispersion available (i.e.,
dispersion for levels (D1), dispersion for Q/Q growth (D2), or dispersion for log difference of levels (D3)),
with similar results. We also obtain similar results if we consider analyst forecasts several quarters ahead.
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Figure 7: Persistence of disagreement vs. Persistence of volatility

We use the dispersion of analyst forecasts of the 1-quarter ahead GDP growth rate as a
proxy for disagreement and the annualized daily volatility over each quarter as a proxy for
volatility. Persistence is measured by means of the autocorrelation coefficient obtained by
performing 5-year rolling-window regressions of the variable of interest (disagreement or
volatility) on its lagged value. The left panel depicts the scatter plot of the autocorrelation
coefficients and the fitted linear relationship (see Table 2 for the regression coefficients).
The right panel depicts the time-series of the autocorrelation coefficients. Data points are
at quarterly frequency from Q2:1974 to Q2:2014. We de-trend the analysts’ dispersion
time-series because it features a strong decreasing linear trend.

Autocorrelation AR(1) t-stats of
coefficients coefficients AR(1) coeffs.

Intercept 0.287∗∗∗ 0.307∗∗∗ 1.837∗∗∗

(4.527) (6.096) (5.073)
Persist. Disagrt 0.500∗∗∗ 0.478∗∗∗ 0.415∗∗∗

(4.510) (5.241) (4.047)
R2 0.287 0.256 0.217
Obs 162 162 162

Table 2: Persistence of disagreement vs. Persistence of volatility

Regressions of the persistence of S&P 500 volatility on the persistence of disagreement. We
measure persistence in three ways: (i) autocorrelation coefficients as in Figure 7 (column 2),
(ii) AR(1) coefficients of the regression of each variable on its lagged values (column 3), and
(iii) t-stats of the AR(1) coefficients (column 4). Data points are at quarterly frequency from
Q4:1968 to Q2:2014. We de-trend the analysts’ dispersion time-series because it features a
strong decreasing linear trend. t-statistics are reported in brackets and statistical significance
at the 10%, 5%, and 1% levels is labeled ∗, ∗∗, and ∗∗∗, respectively. Because residuals are
significantly autocorrelated, t-stats are adjusted using the Newey and West (1987) procedure.

negative when the fundamental is low (in bad economic times).19 In Figure 8, the solid blue

19Equations (7) and (9) show that, indeed, the correlation between the disagreement and the fundamental
is equal to 1. Therefore, disagreement is most likely positive in good times (when the fundamental is large)
and negative in bad times (when the fundamental is small).
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Figure 8: Stock return volatility vs. disagreement

The red, black, and blue curves depict the relation between volatility and disagreement
when the fundamental is f̂B = −1%, f̂B = f̄ , and f̂B = 6%, respectively. The solid red
and blue curves illustrate the most likely relation applying in bad times and good times,
respectively. The calibration is provided in Table 1.

curve depicts the most likely relationship between volatility and disagreement in good times,

whereas the solid red curve depicts the relationship in bad times. We observe a “hockey-stick

pattern,”, i.e., a strong positive relation between absolute disagreement and volatility in bad

times and a considerably weaker relation in good times.20

The prediction that absolute disagreement and return volatility are strongly and posi-

tively related in bad times, but not significantly related in good times, is empirically testable.

To implement the test, we use the dispersion of analyst forecasts of the 1-quarter-ahead real

GDP growth rate and the annualized daily volatility of S&P 500 returns over each quarter

between Q4:1968 and Q2:2014 as proxies for absolute disagreement and volatility. Then, we

perform a predictive regression of 1-quarter-ahead volatility on the current disagreement, in

which the slope coefficients depend on the state of the economy. The expansion dummy,

denoted It, is 1 if the U.S. economy is in expansion in the same quarter. We consider two

20This can also be seen by considering the quadratic relation between stock return variance and disagree-
ment. From Equation (15), the stock return variance can be written: σ2

t = A1tĝ
2
t + A2tĝt + A3t, where the

loading A1t = (Sµ/Sσδ)
2
> 0 is a decreasing function of the fundamental (a pattern that we have identified

numerically). Consequently, when the fundamental is low, the loading is high and thus a “hockey-stick”
pattern emerges (we have also run simulations and found the same pattern: the relation between negative
disagreement and volatility is stronger than the relation between positive disagreement and volatility).
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definitions of good economic times: (i) we define good times as NBER expansions, and (ii)

we define good times as quarters where the mean forecast (across analysts) is larger than its

average (over the time-series). The results thus correspond to the following regression:

Volatilityt+1 = a+ (b+ bexp × It)Disagreementt + εt+1. (16)

The coefficient b in (16) is interpreted as the sensitivity of volatility to disagreement during

bad times, whereas the sum of coefficients b+bexp is interpreted as the sensitivity of volatility

to disagreement during good times.

Table 3 reports the regression results. The second column reports results obtained when

excluding the expansion dummies. The third and fourth column report the full regression

specification (16), using our two definitions of good economic times. Consistent with the

prediction of our model and irrespective of the definition of good times, Table 3 shows

that the relation between volatility and dispersion is stronger in bad times than in good

times. That is, the loadings that apply in bad times (coefficients b in columns 3 and 4)

are positive, large, and significant, whereas in good times the loadings (sum of coefficients

b + bexp in columns 3 and 4) are positive, but not statistically significant: their t-statistics

are 0.449 and 0.776 respectively. Thus, although unconditionally volatility increases with

disagreement (column 2 shows a weakly significant coefficient), there is a strong asymmetric

relation between volatility and dispersion over the business cycle. As in our theoretical

model, this relation features a “hockey-stick” pattern.

3.1.4 Volatility clustering in alternative theoretical models

We conclude this section with two questions. First, can a single agent framework generate

volatility clustering? Second, if agents’s difference of beliefs is generated by overconfidence

instead of model disagreement (Scheinkman and Xiong, 2003; Dumas, Kurshev, and Uppal,

2009), can we also observe volatility clustering?

To address the first question, we observe that in a single agent model the last two terms

in Equation (15) disappear and volatility depends only on σδ and σf,lr. The analysis above

indicates that this second term does not move significantly. Therefore, without disagreement

there are no significant fluctuations in volatility and thus single agent models have difficulties

in generating volatility clustering.

Turning now to the second question, Proposition 1 shows that disagreement mean-reverts

around a persistent f̂B and thus itself becomes persistent. In contrast, disagreement gener-

ated by overconfidence, as in Dumas, Kurshev, and Uppal (2009), is not easily persistent,

even though both agents would be long-term believers. The reason is that disagreement

mean-reverts around zero with a parameter equal to λ + γ/σ2
δ (see Lemma 2 in Dumas,
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It = 1 iif It = 1 iif

t ∈ NBER Expansion f̃t > Average(̃f)
a 0.150∗∗∗ 0.147∗∗∗ 0.149∗∗∗

(25.788) (24.619) (24.890)
b 1.673∗ 5.603∗∗ 2.514∗∗

(1.803) (2.528) (2.514)
bexp −4.808∗ −1.882

(-1.950) (-0.982)
R2 0.018 0.038 0.023
Obs 183 183 183

Table 3: Relation between S&P 500 volatility and dispersion among forecasters

Predictive regressions of future volatility on lagged disagreement. Volatility is measured as
the annualized daily volatility of S&P 500 over each quarter. Disagreement is measured as
the analysts’ forecast dispersion about the one-quarter-ahead US GDP growth. f̃t stands for
the mean (across analysts) analyst forecast on the GDP growth rate at time t, Average(f̃)
for the average (over the entire time-series) of the mean analyst forecast, Disagrt for the
dispersion among analysts at time t, and N for the number of observations. The indicator
It equals 1 in good times and 0 in bad times. Data are at quarterly frequency from Q4:1968
to Q2:2014. We de-trend the analysts’ dispersion time-series because it features a strong
decreasing linear trend. t-statistics are reported in brackets, and statistical significance at
the 10%, 5%, and 1% levels is labeled ∗, ∗∗, and ∗∗∗, respectively.

Kurshev, and Uppal 2009). Because of the second term, this parameter is large under usual

calibrations, which is not enough to generate persistent dynamics.

On a final note, in Appendix A.6, Table 7, we perform a robustness analysis which

further confirms the role played by disagreement for generating persistence and fluctuations

in volatility. The analysis consists in comparing the properties of the model implied volatility

for different calibrations. Consistent with our theoretical results, we find that strong long-

run risk increases the average level of volatility, while severe disagreement increases both the

variation and the persistence of volatility.

4 Survival

In our model we make the assumption that the fundamental is unobservable. It is conse-

quently reasonable to assume that both investors have different beliefs regarding the dy-

namics of an unobservable process. Furthermore, it would be arbitrary and non-realistic

to assume that one of the two agents has the correct beliefs i.e. the right model in mind.

This raises two questions: what is the true data-generating process and how long do agents

survive given this true data-generating process? This section is devoted to a discussion of

these two questions.

In order to investigate how long each agent survives, we have to assume a realistic data-
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generating process in the sense that it has to be consistent with agents beliefs. Indeed,

although both agents might realistically have wrong beliefs, they agents are not too far from

the truth. Therefore, we assume that the true data-generating process is

dδt
δt

= ftdt+ σdW δ
t (17)

dft = λ(f̄ − ft)dt+ σfdW
f
t , (18)

whereW δ andW f are two independent Brownian motions under the true probability measure

P. The true mean-reversion speed λ is assumed to be the average of agents A and B estimated

mean-reversion speeds. Table 4 provides the values of the true and perceived mean-reversion

speeds as well as their corresponding half-lives. Both agents misperceive the true length of

the business cycle, but one overestimates it whereas the other underestimates it.

Belief λ Half-Life
Agent A 0.3 2.31
True value 0.2 3.46
Agent B 0.1 6.93

Table 4: Mean-reversion speed and length of the business cycle

To investigate the speed at which agent A or agent B disappears from the economy,

we follow Yan (2008) and compute the P-expectation of the consumption share of agent A.

To this end we first simulate the dividend process using the true data-generating process

provided in (17) and (18). Then, we perform each agent’s learning exercise and we compute

the expectation of the consumption share of agent A, ω(ηT ), for T ranging from 0 to 1, 000

years.

Figure 9 depicts the P-expectation (i.e., under the true probability measure) of the con-

sumption share of agent A over 1,000 years. This expected consumption share slightly

decreases on average. Investors who believe in long-run risk are expected to save more and

thus have a lower survival index (Yan, 2008). Nevertheless, Figure 9 shows that both shares

of consumption remain very close to each other and that both agents survive for more than

1,000 years. This is also consistent with Yan (2008). We conclude therefore that the type of

disagreement considered here is economically important over long horizons.

5 Conclusion

We consider a theoretical framework in which two agents interpret information using different

economic models of the economy. Specifically, in our setup agents disagree on the length of

the business cycle. We analyze the asset pricing implications of such disagreement.
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Figure 9: Expected share of consumption of agent A

Expectation under the true probability measure P of the consumption share of agent A,
ω(ηT ). 10,000 simulations over 1,000 years are performed. The calibration is provided in
Table 1.

We first show that the disagreement is strongly persistent, affects the volatility of the

stochastic discount factor and consequently impacts the stock return volatility. Disagreement

generates different expectations of future economic variables, or different economic outlooks,

which further amplify the return volatility and the trading volume. We decompose the

dynamics of volatility and show that disagreement is the main driver of volatility fluctuations,

while the absolute level of volatility is driven primarily by long-run risk. We thus provide a

theoretical foundation of the GARCH-like behavior of stock returns. We further document

empirically a strong link between the persistence of disagreement and the persistence of

volatility and also a strong relationship between disagreement and volatility in bad economic

times, consistent with the main predictions of our model.

Several questions are the subject of our ongoing research. First, we assume that investors

do not change their economic models. It is important to understand how our results would

change if agents were to perform the full learning exercise. Our expectation is that investors’

estimates should end up close to the true model only after a very long time. Indeed, an

accurate estimator of the mean-reversion speed of a relatively persistent process requires a

large sample of data (Hansen, Heaton, and Li, 2008). In addition, the large set of plausible

models governing the real economy makes it virtually impossible for the agents to end up in

agreement.

The learning uncertainty is by construction constant in our setup (see David (2008) for

a model in which uncertainty is fluctuating). This is because we do not consider here any

additional news (newspapers, quarterly reports, economic data, and so on). In a setting

with additional news and in which investors’ attention to news is fluctuating, uncertainty

will fluctuate. Our conjecture is that spikes in attention will exacerbate the disagreement
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among agents, further amplifying the effects on volatility described in this paper. It is

therefore important to study the synergistic relationships between attention, uncertainty,

and disagreement and their impact on asset prices.

Finally, our model generates a term structure of disagreement whose shape is governed by

the difference between the mean-reversion parameters. Empirically observed term structures

of disagreement (as in Patton and Timmermann (2010) or Andrade, Crump, Eusepi, and

Moench (2014)) can therefore help estimating the magnitude of the difference between these

parameters. The term structure of disagreement should also have implications on the pricing

of firms with different characteristics and probably explain well-known anomalies such as the

value premium.
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A Appendix

A.1 Kalman/Maximum-Likelihood vs. Particle Filtering

Let us assume that the true data-generating process satisfies

dδt
δt

= ftdt+ σδdW
δ
t (19)

dft = λ(f̄ − ft)dt+ σfdW
f
t , (20)

where W δ and W f are independent Brownian motions. The true parameters defining the dynamics
of the dividend δ and the fundamental f are provided in Table 5.

Parameter Symbol Value
Dividend Growth Volatility σδ 0.03
Mean-Reversion Speed of the Fundamental λ 0.2
Long-Term Mean of the Fundamental f̄ 0.025
Volatility of the Fundamental σf 0.015

Table 5: True parameters

We simulate dividend data at quarterly frequency over a 50-year horizon21 using the true data-
generating process defined in Equations (19) and (20) and the parameters provided in Table 5.
Each agent uses the quarterly dividend data to estimate the following discrete-time model

log

(
δt+∆

δt

)
=

(
ft −

1

2
σ2
δ

)
∆ + σδ

√
∆ε1,t+∆

ft+∆ = Afft +Bf + Cf ε2,t+∆,

where Af = e−λ∆, Bf = f̄
(
1− e−λ∆

)
, Cf =

σf√
2λ

√
1− e−2λ∆, and ε1, ε2 are independent Gaussian

random variables with mean 0 and variance 1.
Although agents have the same information at hand, we assume that they use different econo-

metrics techniques to perform their estimation exercise. Agent A estimates the unobservable fun-
damental and the parameters by applying the Kalman filter together with Maximum-Likelihood
(Hamilton, 1994), while agent B applies the particle filtering algorithm presented in Liu and West
(2001).22

Table 6 shows that agent A and B obtain parameter estimates of the dividend volatility σδ, the
long-term mean of the fundamental f̄ , and the volatility of the fundamental σf that are relatively
close to each other. Their estimation of the mean-reversion speed λ, however, differs significantly
from one another. Indeed, the absolute difference between the mean-reversion speed estimated by
agent A and that estimated by agent B is worth 0.1742. Relative to the true value of the parameter,
the difference in the estimated mean-reversion speeds is about 87%, whereas it is less than 25%
for all other parameters. Therefore, this calibration exercise motivates, first, our assumption to
consider heterogeneity in mean-reversion speeds only and, second, our choice to consider mean-
reversion speeds such that |λA − λB| = 0.2.

21The frequency and horizon considered match those of the Real GDP growth time-series available on the
Federal Reserve Bank of Philadelphia’s website.

22We would like to thank Arthur Korteweg and Michael Rockinger for providing us with various particle
filtering codes. The particle filtering algorithm of Liu and West (2001) estimates, at each point in time, the
unobservable fundamental and the parameters of the model.
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Definition Symbol Value
Absolute Difference in
Dividend Growth Volatility |σAδ − σBδ| 0.0022
Absolute Difference in
Mean-Reversion Speed of the Fundamental |λA − λB| 0.1742
Absolute Difference in
Long-Term Mean of the Fundamental |f̄A − f̄B| 0.0056
Absolute Difference in
Volatility of the Fundamental |σAf − σBf | 0.0032
Relative Difference in

Dividend Growth Volatility |σAδ−σBδ|
σδ

0.0749

Relative Difference in

Mean-Reversion Speed of the Fundamental |λA−λB |
λ

0.8683
Relative Difference in

Long-Term Mean of the Fundamental |f̄A−f̄B |
f̄

0.2254

Relative Difference in

Volatility of the Fundamental
|σAf−σBf |

σf
0.2105

Table 6: Estimated parameters: maximum-likelihood vs. particle filter
Agent A applies the Kalman-filter together with Maximum-Likelihood, while agent B applies
the particle filter algorithm of Liu and West (2001). The parameter values σBδ, λB, f̄B,
and σBf are those obtained at the terminal time. Numbers reported above are medians
computed over 1,000 simulations.

A.2 Filtering Problem

Agent A’s learning problem

Following the notations of Liptser and Shiryaev (2001), the observable process is

dδt
δt

= (A0 +A1fAt)dt+B1dW
f
At +B2dW

δ
At

= (0 + 1 · fAt)dt+ 0 · dW f
At + σδdW

δ
At.

The unobservable process fA satisfies

dfAt = (a0 + a1fAt)dt+ b1dW
f
At + b2dW

δ
At

= (λAf̄ + (−λA)fAt)dt+ σfdW
f
At + 0 · dW δ

At.

Thus,

bob = b1b
′
1 + b2b

′
2 = σ2

f

BoB = B1B
′
1 +B2B

′
2 = σ2

δ

boB = b1B
′
1 + b2B

′
2 = 0.
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The estimated process defined by f̂At = EPA(fAt|Ot) has dynamics

df̂At = (a0 + a1f̂At)dt+ (boB + γAtA
′
1)(BoB)−1(

dδt
δt
− (A0 +A1f̂At)dt),

where the posterior variance γAt solves the ODE

γ̇At = a1γAt + γAta
′
1 + bob− (boB + γAtA

′
1)(BoB)−1(boB + γAtA

′
1)′.

Assuming that we are at the steady-state yields

a1γAt + γAta
′
1 + bob− (boB + γAtA

′
1)(BoB)−1(boB + γAtA

′
1)′ = 0.

Consequently,

df̂At = λA(f̄ − f̂At)dt+
γA
σδ
dŴ δ

At

where

γA =
√
σ2
δ (σ

2
δλ

2
A + σ2

f )− λAσ2
δ

dŴ δ
At =

1

σδ

(
dδt
δt
− f̂Atdt

)
.

Agent B’s learning problem

The estimated process is defined by f̂Bt = EB(fBt|Ot). Doing the same computations as before
yields

df̂Bt = λB(f̄ − f̂Bt)dt+
γB
σδ
dŴ δ

Bt,

where

γB =
√
σ2
δ (σ

2
δλ

2
B + σ2

f )− λBσ2
δ

dŴ δ
Bt =

1

σδ

(
dδt
δt
− f̂Btdt

)
.

A.3 Proof of Proposition 1

The dynamics of f̂A under the measure PB are written

df̂At = λA(f̄ − f̂At)dt+
γA
σ2
δ

(f̂Bt − f̂At)dt+
γA
σδ
dŴ δ

Bt

= λAf̄dt+ λAĝtdt− λAf̂Btdt+
γA
σ2
δ

ĝtdt+
γA
σδ
dŴ δ

Bt

because by Girsanov’s Theorem

dŴ δ
At = dŴ δ

Bt +
1

σδ
ĝtdt.
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Consequently, the dynamics of ĝ satisfy

dĝt ≡ df̂Bt − df̂At

=

[
(λA − λB)(f̂Bt − f̄)−

(
λA +

γA
σ2
δ

)
ĝt

]
dt+

γB − γA
σδ

dŴ δ
Bt.

A.4 Proof of Proposition 3

The optimization problem for agent B is

max
cBt

E

[∫ ∞
0

e−ρt
c1−α
Bt

1− α
dt

]

s.t. E
[∫ ∞

0
ξBt cBtdt

]
≤ xB0,

where ξB denotes the state-price density perceived by agent B and xB0 is his or her initial wealth.
The problem for agent A (under the probability measure PB) is

max
cAt

E

[∫ ∞
0

ηte
−ρt c

1−α
At

1− α
dt

]

s.t. E
[∫ ∞

0
ξBt cAtdt

]
≤ xA0. (21)

Note how the change of measure enters the objective function of agent A, but that the expectation
in the budget constraint (21) does not need to be adjusted. This is because the state-price density
inside the expectation, ξB, is the one perceived by agent B.23

The first-order conditions are

cBt =
(
κBe

ρtξB
)− 1

α

cAt =

(
κA
ηt
eρtξB

)− 1
α

,

where κA and κB are the Lagrange multipliers associated with the budget constraints of agents A
and B. Summing up the agents’ optimal consumption policies and imposing market clearing, i.e.,
cAt + cBt = δt, yields the state-price density perceived by agent B:

ξBt = e−ρtδ−αt

[(
ηt
κA

)1/α

+

(
1

κB

)1/α
]α

Substituting the state-price density ξB in the optimal consumption policies yields the following
consumption sharing rules

cAt = ω (ηt) δt

cBt = [1− ω (ηt)] δt,

23Alternatively, we could have defined ξA, the state-price density under agent A’s probability measure.
Then, we would have EA

[
ξA1x

]
= EB

[
ηξA1x

]
= EB

[
ξB1x

]
for any event x. This implies that ξB = ηξA.
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where ω(η) denotes agent A’s share of consumption, which satisfies

ω (ηt) =

(
ηt
κA

)1/α

(
ηt
κA

)1/α
+
(

1
κB

)1/α
.

We assume, as in Yan (2008) and Dumas, Kurshev, and Uppal (2009), that the relative risk
aversion α is an integer. The state-price density at time T satisfies

ξBT = e−ρT δ−αT

((
1

κB

)1/α

+

(
ηT
κA

)1/α
)α

= e−ρT δ−αT
1

κB

α∑
j=0

(
α

j

)(
ηTκB
κA

) j
α

= e−ρT δ−αT
1

κB

α∑
j=0

(
α

j

)(
1

ηt

) j
α
(
ηtκB
κA

) j
α

η
j
α
T

= e−ρT δ−αT
1

κB

α∑
j=0

(
α

j

)(
1

ηt

) j
α
(

ω(ηt)

1− ω(ηt)

)j
η
j
α
T , (22)

where the last equality comes from the fact that

ω(ηt) =

(
ηt
κA

)1/α

(
1
κB

)1/α
+
(
ηt
κA

)1/α

1− ω(ηt) =

(
1
κB

)1/α

(
1
κB

)1/α
+
(
ηt
κA

)1/α
(23)

and consequently (
ηtκB
κA

) 1
α

=
ω(ηt)

1− ω(ηt)
.

Rewriting Equation (23) yields(
1

κB

)1/α

+

(
ηt
κA

)1/α

=

(
1

1− ω(ηt)

)α 1

κB
. (24)
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Thus the single-dividend paying stock price satisfies

STt = Et
(
ξBT
ξBt
δT

)

(22) and (24)
= Et

e−ρT δ−αT 1
κB

∑α
j=0

(
α
j

) (
1
ηt

) j
α
(

ω(ηt)
1−ω(ηt)

)j
η
j
α
T

e−ρt
(

1
1−ω(ηt)

)α
1
κB
δ−αt

δT



= Et

e−ρ(T−t)

∑α
j=0

(
α
j

) (
1
ηt

) j
α
(

ω(ηt)
1−ω(ηt)

)j
η
j
α
T(

1
1−ω(ηt)

)α
δ−αt

δ1−α
T


= e−ρ(T−t)(1− ω(ηt))

αδαt

α∑
j=0

(
α

j

)(
1

ηt

) j
α
(

ω(ηt)

1− ω(ηt)

)j
Et
(
η
j
α
T δ

1−α
T

)
.

Finally the stock price is given by

St =

∫ ∞
t

Sut du.

The wealth of agent B at time t satisfies

VBt = Et
(∫ ∞

t

ξBu
ξBt
cBudu

)
.

The definitions of agent B’s consumption, cB, the state-price density, ξB, and the share of
consumption, ω(η), imply that

Et
(
ξBu
ξBt
cBu

)
= Et

e−ρ(u−t)

[(
1
κB

)1/α
+
(
ηu
κA

)1/α
]α

[(
1
κB

)1/α
+
(
ηt
κA

)1/α
]α
δ−αt

(1− ω(ηu))δ1−α
u


= Et

e−ρ(u−t)κB(1− ω(ηt))
αδαt

(
1

κB

)1/α
[(

1

κB

)1/α

+

(
ηu
κA

)1/α
]α−1

δ1−α
u

 .(25)
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Since the relative risk aversion α is an integer we have[(
1

κB

)1/α

+

(
ηu
κA

)1/α
]α−1(

1

κB

)1/α

=

[(
ηuκB
κA

)1/α

+ 1

]α−1
1

κB

=
1

κB

α−1∑
j=0

(
α− 1

j

)(
ηuκB
κA

)j/α

=
1

κB

α−1∑
j=0

(
α− 1

j

)(
1

ηt

)j/α(ηtκB
κA

)j/α
ηj/αu

(A.4)
=

1

κB

α−1∑
j=0

(
α− 1

j

)(
1

ηt

)j/α( ω(ηt)

1− ω(ηt)

)j
ηj/αu (26)

Substituting Equation (26) in Equation (25) yields the desired result

Et
(
ξBu
ξBt
cBu

)
= e−ρ(u−t)δαt

α−1∑
j=0

(
α− 1

j

)
ω(ηt)

j(1− ω(ηt))
α−jEt

((
ηu
ηt

)j/α
δ1−α
u

)
.

A.5 State Vector and Transform Analysis

Finding the equilibrium price boils down to computing the following expectation:

Et
[
η
j
α
u δ

1−α
u

]
= Et

[
e(1−α 0 0 j/α 0 0 0)X

]
, (27)

where we define the augmented vector of state variables X by

X =
(
ζ f̂B ĝ µ ĝ2 ĝf̂B f̂2

B

)>
. (28)

In Equation (28), ζ represents the log aggregate consumption (ζ ≡ ln δ), whereas µ represents
the log relative outlook (µ ≡ ln η). Observe that the vector of state variables (initially four)
has been augmented by adding three quadratic and cross-product terms. By doing so, the initially
affine-quadratic vector (ζ, f̂B, ĝ, µ)> is transformed into the affine vector X (see Cheng and Scaillet,
2007). It follows that the expectation in Equation (27) is the moment-generating function of an
affine vector and thus we can apply the theory of affine processes (Duffie, Pan, and Singleton, 2000)
to compute this quantity, which becomes

Et
[
η
j
α
u δ

1−α
u

]
= Et

[
e(1−α 0 0 j/α 0 0 0)X

]
= eα̃(u−t)+β̃(u−t)Xt . (29)

In Equation (29), α̃ is a 1-dimensional function of the maturity u, with boundary condition α̃(0) = 0,
whereas β̃ is a 7-dimensional function of the maturity u, with boundary condition β̃(0) = (1 −
α 0 0 j/α 0 0 0).
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In order to solve Equation (29), let us write the dynamics of the affine state-vector X as follows:

dXt = µ(Xt)dt+ σ(Xt)dŴ
δ
Bt

µ(X) = K0 +K1X(
σ(X)σ(X)>

)
ij

= H0ij +H1ij ·X.

From Duffie (2010) we know that

Et (δεuη
χ
u) = Et

(
eεζu+χµu

)
= eα̃(τ)+β̃(τ)Xt ,

where τ = u − t and ε and χ are arbitrary constants. α̃ and β̃ solve the following system of 8
Ricatti ODEs

β̃′(τ) = K>1 β̃(τ) +
1

2
β̃>(τ)H1β̃(τ)

α̃′(τ) = K>0 α̃(τ) +
1

2
β̃>(τ)H0β̃(τ)

with boundary conditions β̃1(0) = ε, β̃2(0) = 0, β̃3(0) = 0, β̃4(0) = χ, β̃5(0) = 0, β̃6(0) = 0,
β̃7(0) = 0, and α(0) = 0. This system cannot be directly solved in closed form. However, we
know that β̃1(τ) = ε and β̃4(τ) = χ. Thus, the system can be written in a matrix Riccati form as
follows24

Z ′ = J +B>Z + ZB + ZQZ,

where

Z =

 Γ β̃3/2 β̃2/2

β̃3/2 β̃5 β̃6/2

β̃2/2 β̃6/2 β̃7


and Γ is a function of τ . The matrices J , B, and Q satisfy

J =

 0 − εχ
2

ε
2

− εχ
2

(χ−1)χ
2σδ2

0
ε
2 0 0


B =

 0 0 0

−γAε+ γBε− (λA − λB)f̄ −λAσδ
2+γA−γAχ+γBχ

σδ2
λA − λB

γBε+ f̄λB −γBχ
σδ2

−λB



Q =

0 0 0

0 2(γA−γB)2

σδ2
2γB(γB−γA)

σδ2

0 2γB(γB−γA)
σδ2

2γ2B
σδ2

 .

Note that we set J11 and J23 to zero since they can be any real numbers. Using Radon’s lemma,

24See Andrei and Cujean (2010) for detailed explanations related to this methodology.
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we get

Z(τ) = Y −1(τ)X(τ) where X and Y satisfy

X ′ = BX + JY, X(0) = [0]3×3

Y ′ = −QX −B>Y, Y (0) = I3×3.

The solution of this system is

(X(τ) Y (τ)) = (X(0) Y (0))M(τ), where M(τ) is the matrix exponential

M(τ) = exp

((
B −Q
J −B>

)
τ

)
.

Note that the matrix exponential M(τ) has to be computed using a Jordan decomposition. Indeed,
we have

M(τ) = Sexp(Joτ)S−1,

where Jo and S are, respectively, the Jordan and the similarity matrix extracted from the Jordan
decomposition. The Betas are consequently given by

β̃1(τ) = ε

β̃2(τ) =
n01 +

∑8
i=1 ni1e

jiτ

b01 +
∑8

i=1 bi1e
jiτ

β̃3(τ) =
n02 +

∑8
i=1 ni2e

jiτ

b02 +
∑8

i=1 bi2e
jiτ

β̃4(τ) = χ

β̃5(τ) =
n03 +

∑8
i=1 ni3e

jiτ

b03 +
∑8

i=1 bi3e
jiτ

β̃6(τ) =
n04 +

∑8
i=1 ni4e

jiτ

b04 +
∑8

i=1 bi4e
jiτ

β̃7(τ) =
n05 +

∑8
i=1 ni5e

jiτ

b05 +
∑8

i=1 bi5e
jiτ

.

Notice that the function α̃(τ) is obtained through a numerical integration. Thus, this function is
not obtained in closed form. Since in our setup χ = j

α and ε = 1− α, the stock price simplifies to

St =

∫ ∞
0

Sτt dτ

= δt

α∑
j=0

(
α
j

)
ω(ηt)

j(1− ω(ηt))
α−j×

×
∫ ∞

0
e−ρτeα̃j(τ)+β̃2j(τ)f̂Bt+β̃3j(τ)ĝt+β̃5j(τ)ĝ2t+β̃6j(τ)f̂Btĝt+β̃7j(τ)f̂2Btdτ.

Even though the above integral is computed numerically, the price process can be simulated very
efficiently.
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A.6 Robustness Analysis

Table 7 confirms that disagreement and long-run risk have different impacts on stock-return volatil-
ity. Indeed, an increase in long-run risk increases the average level of volatility (Bansal and Yaron,
2004), while an increase in disagreement increases both the variation of volatility and the persistence
of volatility.

Economy Parameter Mean Min. Max. Vol. Persist.
(1) No model disagreement λA = 0.1
and severe long-run risk λB = 0.1 0.169 0.164 0.181 0.002 0.463
(2) Moderate model disagreement λA = 0.2
and strong long-run risk λB = 0.1 0.101 0.081 0.147 0.012 0.913
(3) Severe model disagreement λA = 0.3
and moderate long-run risk λB = 0.1 0.085 0.046 0.199 0.028 0.997
(4) Severe model disagreement λA = 0.4
and weak long-run risk λB = 0.2 0.023 0.013 0.043 0.005 0.996
(5) Severe model disagreement λA = 0.5
and no long-run risk λB = 0.3 0.005 0.002 0.017 0.003 0.999

Table 7: Properties of volatility for various calibrations

This table presents the mean, minimum, maximum, volatility, and persistence of volatility
in five different models. Persistence is calculated as the sum of the parameters β1 and β2

in the GARCH(1,1) estimation. In bold is the benchmark model considered throughout the
paper. Numbers reported above are (annualized) averages computed over 1,000 simulations
of weekly data over a 100-year horizon.
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